Progress on EvtGen and Pythia developments

EvtGen

Fernando Abudinén, John Back, Michal Kreps, Thomas Latham

Pythia

Ulrik Egede, Tom Hadavizadeh, Philip Ilten, Minni Singla, Peter Skands

SwiftHep workshop March 27, 2024

Recap on EvtGen

- <u>EvtGen</u>: generator package specialised for heavy-flavour hadron decays
 - Used as well inside simulation of b jets
- Contains about 130 decay models implementing specific dynamics of various decays
- Maintains detailed decay table with large number of explicit decays
 - Known decay branching fractions do not add up to 100%; Remainder is filled up by generating quark configurations and passing those to <u>Pythia8</u> for fragmentation
 - Fraction of decays passed to Pythia8 depends on particle (*b*-baryons rely more on Pythia8 than others)
- τ decays simulated using <u>TAUOLA</u>
- Final-state radiation (FSR) simulated using <u>PHOTOS</u>

Example collision simulated by Pythia8

Status and plans

- Developed in the 90's, stable over past 10 years (changes mostly additions of new models)
- Physics wise no plan for changes in near future
- Major goal ⇒ enable thread safety

Recent developments

- Work on code modernisation, clean-up, removal of duplications, and documentation
- Implemented global testing framework for validation
- Fixing of broken models
- First core adaptation towards thread safety (full adaptation intended for the future)
- Studies of alternatives for \u03c6 simulation (to be continued)
- Studies of alternatives for FSR simulation Today's focus

Challenges for multithreading in EvtGen

Internal: structural limitations for multithreading inside EvtGen

- Global instance of random number generator
- Global instance of particle properties and decay table
- ⇒ Needed structural changes identified and first combination of solutions found
- External: limitations from dependences
 - TAUOLA
 - PHOTOS
- ⇒ Overcoming limitations from dependences are more challenging as they are external
 - TAUOLA and PHOTOS authors currently exploring ways to enable thread safety
 - Exploring use of Pythia8 as alternative to TAUOLA
 - Exploring use of Vincia QED (Pythia8) shower and Sherpa's PHOTONS++ as alternative to PHOTOS

Progress on thread-safety

Set of solutions to reach thread-safety (preliminary):

- Converted static objects to static const where possible
- Global singleton objects made thread-local
- Serialized (mutexed) calls to PHOTOS and TAUOLA
- ⇒ Deeper structural changes needed to fully exploit multithreading (plan to continue working on it)
- ⇒ Current preliminary status reached thread-safety, passing tests for all decay models
- \Rightarrow But performance limited by external dependencies
- PHOTOS is used for almost every decay
- \Rightarrow Study alternatives for final-state radiation (FSR)

With help of research-software engineers: Heather Ratcliffe, Chris Brady

Final-state radiation generators

Treat the effect of FSR as a correction to the Born-level decay rate (or cross section)

 $d\Gamma^{radiative} = d\Gamma^{Born} f(\Phi) d\Phi$ Φ : Phase-space of photons

• Example (oversimplified): neutral scalar $\rightarrow e^+e^-$ (single QED dipole)

Final-state radiation generators

Pythia QED

- Determines "best" set of dipoles (no genuine multipole effects)
- Works as parton shower evolution interleaved with QCD, MPI, ...

YFS – Yennie-Frautschi-Suura 1961 (with modern implementations as in PHOTOS and Sherpa)

- Takes full (multipole) soft interference effects into account
- Scalar QED (no spin dependence)
- Adds a number of photons to final state with predetermined kinematics (no interleaving)

Vincia QED Kleiss-Verheyen 2017, Brooks-Verheyen-Skands 2020

- Takes full (multipole) soft interference effects into account
- Not limited to scalar QED (includes spin dependence)
- Works as parton shower evolution based on antenna approximation (can be interleaved)

Vincia QED shower for FSR

Giacomo Morgante's Honours Thesis

Explore use of Vincia's multipole QED shower and compare with Pythia and PHOTOS

- \Rightarrow Good agreement for radiated energy
- \Rightarrow Larger impact of collinear singularities on angular distribution in Pythia

Vincia QED shower for FSR

 \Rightarrow Vincia tends to radiate fewer but harder photons than PHOTOS \Rightarrow Difference around 10% for modes with electrons

Vincia QED shower for FSR

- Recently adapted to radiate off hadrons (previously supporting only leptons)
- Matrix-element corrections not implemented yet
- ⇒ Potential main cause for some discrepancies with other generators
- \Rightarrow A lot of room for improvement and validation
- \Rightarrow However, preliminary results look promising

Technical aspects

- Vincia is embedded in Pythia8
- Algorithm implementation enables thread safety
- Developed EvtGen ↔ Vincia interface based on existing dependency with Pythia8
- \Rightarrow Ready to be used, but needs latest Vincia developments (not released yet)

Sherpa's PHOTONS++ for FSR

- <u>PHOTONS++</u> in <u>Sherpa</u> can simulate emission of soft photons based on YFS approximation (mode 1)
- If switched on also hard photons based on collinear approximation (mode 2), with
 - Approx. matrix-element corrections (mode 20) or
 - Exact matrix-element corrections (mode 21)
- Using option 1, observed fewer hard photons with respect to PHOTOS (note that PHOTOS has matrixelement corrections implemented)
- Generally good agreement with PHOTOS using options 20 and 21
- ⇒ Will enable user to switch between options for systematic studies

A word on timing

- Compare simulation time using $J/\psi \rightarrow e^+e^-$ decay as benchmark
- \Rightarrow Collinear singularities enhanced due to small electron mass

- \Rightarrow Good precision/time trade-off for option 20 (will use as default)
- \Rightarrow Potential speedup using Vincia or PHOTONS by about factor 4

86.48 %

Sherpa's PHOTONS++ for FSR

- PHOTONS++ algorithm enables thread safety
- Developed EvtGen ↔ Sherpa interface (using Sherpa 2.2.15 release)
- A few aspects need to be ironed out
 - Use EvtGen's random-number generator as external generator for Sherpa (as for PHOTOS and Pythia8)
 - Initialisation of Sherpa (might be initialising unnecessary objects)
 - Should Sherpa object be thread-local?

Comparisons between FSR generators

Performed various comparisons across generators

 $J/\psi \rightarrow e^+e^-$

- Vincia and PHOTONS radiate more energy than PHOTOS (around 10% for modes with electrons)
- Vincia tends to radiate smaller and PHOTONS larger numbers of photons
- Collinear singularities in angular distribution less pronounced in Vincia

Comparisons between FSR generators

$$J/\psi \to \mu^+\mu^-$$

 Differences between generators become smaller for muons (for which the impact of collinear singularities is smaller than for electrons)

 \Rightarrow Generally good agreement between generators

Comparisons between FSR generators

Some more characteristic examples for the amount of radiated energy

- Generally good agreement between PHOTOS and PHOTONS
- \Rightarrow Differences in Vincia potentially due to missing matrix-element corrections
- \Rightarrow In some cases all generators show very good agreement

Pythia status and plans

- General purpose generator for simulation of collision events of particles (electrons, protons, photons, heavy nuclei) at high-energies.
- Contains models for several aspects: hard/soft interactions, parton distributions, initial/final-state parton showers, multiparton interactions, fragmentation and decay.

Rencently worked on different aspects aimed at making simulation of *b*-hadron faster:

B enhancement
Doubly-heavy hadrons in Pythia

To be continued

Optimised simulation for colour-reconnection models with junctions New

Interests for future developments:

Implementation of matrix-element corrections in Vincia

Improving colour-reconnection models

 QCD-based colour-reconnection models with junction agree well with collision data (without particular tuning)

CR junction: choose "shortest" string configuration

- Various issues related with coding and repeated unnecessary calls with calculations
- \Rightarrow Implemented set of code changes to speed up

Improving colour-reconnection models

Code modifications

- Various functions took smart pointers as arguments
 - ⇒ Invokes copy constructor and needs locking to update reference count
 - \Rightarrow Use instead reference to smart pointer as argument
- Implement const correctness in various functions
- Avoid unnecessary repeated function calls, for example calculation of dipole momentum (cache whenever possible)

 \Rightarrow Significant decrease of CPU time from 22% to 4%

- Further improvements possible, but require major restructuring
- In total reached speedup by about factor 3
- \Rightarrow Promising for enhancement of baryon production

void ColourReconnection::singleJunction(ColourDipolePtr dip1,

2.27 ColourDipolePtr dip2, ColourDipolePtr dip3) {

// Do nothing if one of the dipoles is a junction or antijunction.

- 0.91 if (dipl->isJun || dipl->isAntiJun) return;
- 0.68 if (dip2->isJun || dip2->isAntiJun) return;
- 0.54 if (dip3->isJun || dip3->isAntiJun) return;
 - // Check that all dipoles are active.
- 0.67 if (!dipl->isActive || !dip2->isActive || !dip3->isActive) return;

Benchmark test goes from 2m27s to 55s

Summary and outlook

EvtGen:

- Continued work towards thread safety
- ⇒ Converged on preliminary set of solutions to enable thread-safety of generator (full exploitation of multi-threading will require further structural changes)
- \Rightarrow Performance limited by external dependencies
- Implemented interfaces to Vincia QED and Sherpa's PHOTONS++
- ⇒ Needs to iron out some details, but generally good agreement across generators
- τ decays: not mentioned today but plan to continue work on spin-basis conversion to use Pythia8 (interesting also for TAUOLA)

Pythia:

- Recently enabled Vincia QED shower to radiate off hadrons
- ⇒ Plan to work on implementing matrix-element corrections
- Improved implementation colour-reconnection models reaching large speed up
- Plan to continue work on enhancement of b-hadron production to speed up simulation