
111 August 2022Sam Eriksen

SWIFT-HEP WP5
Analysis Systems

Sam Eriksen

27th March 2024

Overview

• WP5 overview + roadmap

• Current progress in WP5

• Future for WP5

Previous updates

- November 2023
- September 2023
- May 2023
- March 2023
- February 2023 2

https://indico.cern.ch/event/1324606/contributions/5639228/attachments/2757250/4800888/2023_11_22_SWIFT-HEP_Meeting.pdf
https://indico.cern.ch/event/1325046/contributions/5575746/attachments/2724511/4734462/2023_09_29_SWIFT-HEP_monthly_update.pdf
https://indico.cern.ch/event/1290054/contributions/5420864/attachments/2654888/4597700/SE_SWIFT-HEP_monthly_update_May2023.pdf
https://indico.cern.ch/event/1215829/contributions/5306513/attachments/2620665/4530829/SWIFT-HEP_March2023.pdf
https://indico.cern.ch/event/1249939/contributions/5281648/attachments/2599865/4488840/SE_25Feb2023_2.pdf

WP5: Analysis Systems

WP5: Analysis Systems
Run analysis workloads optimally on

distributed resources

511 August 2022Sam Eriksen 527 March 2024Sam Eriksen

Analysis Anatomy

data

Task Task Task

data

Task Task

data

Task

data

New idea/extension of

existing work

Publication

create/modify

code

Run analysis on

laptop/cluster/grid

Understand

results

New ideas for

improvement,

mistakes identified, or

updates

One cycle as
short as a day
or as long as a
month

See talk by Luke Kreczko for some BIG Picture

https://docs.google.com/presentation/d/1WplKw9tjYMW3TOTULRLbxSHUWJ_tO2TRQvmp3F3srfg/edit#slide=id.g61d98b96ec_0_152

611 August 2022Sam Eriksen 627 March 2024Sam Eriksen

Analysis Anatomy

data

Task Task Task

data

Task Task

data

Task

data

WP1

Analysis step
output

Data lake

DIRAC

WP5

caching

WP5 in a nutshell:

Run analysis workloads optimally** on distributed (GridPP) resources

** balanced between user-experience and computing efficiency

711 August 2022Sam Eriksen 727 March 2024Sam Eriksen

WP5: Roadmap

Dask to DIRAC

interface

(dask-dirac)

Connect to data

lake (caching)

Specify resource requirements

per analysis component

(portability)

Data lake to

DIRAC (via

Rucio)

Virtual analysis

facility

DIRAC

workflow

manager

Via tags
(slide 26)

REST
API FileCatalog?

Caching at

analysis step

level

WP5
1 2

3

4

WP1

Dask to DIRAC

interface

(dask-dirac)

Connect to data

lake (caching)

Specify resource requirements

per analysis component

(portability)

Data lake to

DIRAC (via

Rucio)

Virtual analysis

facility

DIRAC

workflow

manager

Via tags
(slide 26)

REST
API FileCatalog?

Caching at

analysis step

level

WP5
1 2

3

4

WP1

More detailed slides

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf
https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf
https://docs.google.com/presentation/d/1hIwuAaIavxmtL0ckPLyLLw3b4Csuya2lUtUKhK82JQw/edit#slide=id.g12a7c0b9631_0_7

811 August 2022Sam Eriksen 827 March 2024Sam Eriksen

WP5: Roadmap

1
Dask to DIRAC

interface

(dask-dirac)

Connect to data

lake (caching)

Specify resource requirements

per analysis component

(portability)

Caching at

analysis step

level

1

2

3

4

• Add extension to dask

• Dask is able to parallelize any python code

• Add the ability to save output after dask instance has closed

• Avoid having to re-run analysis steps

• E.g. Let some stages run on GPUs

See talk by Luke Kreczko for some future planning

https://github.com/SWIFT-HEP/dask-dirac
https://docs.google.com/presentation/d/1WplKw9tjYMW3TOTULRLbxSHUWJ_tO2TRQvmp3F3srfg/edit#slide=id.g61d98b96ec_0_152

Where did we leave things
at the last workshop

1011 August 2022Sam Eriksen 1027 March 2024Sam Eriksen

Where we left things last time

• Have a stable workflow
• Start scheduler at Bristol
• Submit jobs (via DIRAC) to run workers

are some site (Bristol / RAL)

• Reliable dask-DIRAC interface
• Integrated with CMS AGC
• Performed some basic benchmarking

Dask to DIRAC interface (dask-dirac)

https://github.com/SWIFT-HEP/dask-dirac

1111 August 2022Sam Eriksen 1127 March 2024Sam Eriksen

Where we left things last time

• Able to do file manipulation (fairly
easy – except adding files)

• Use gfal for file adding
• Register file via HTTP

• This stage was painful
• Not automated

What’s happened since the
last workshop

1311 August 2022Sam Eriksen 1327 March 2024Sam Eriksen

What have we been focusing on

• Enable multi-site submission

• Explore best ways to interact with
data storage

1411 August 2022Sam Eriksen 1411 August 2022Sam Eriksen

Multi-site submission

‐ Moved JDL handling to use templates
‐ Able to easily control which sites are

used
‐ May want to add more fine control in

future (eg 3-workers at site X, 4-
workers at site Y for data locality)

RAL

Bristol

Site 2

Bristol

Site 1

1511 August 2022Sam Eriksen 1527 March 2024Sam Eriksen

Interactions with data lake

Connect to data lake (caching)

Simplified workflow

1. Run some analysis
2. Get it sent back to you
3. Save to locally
4. Move it to storage

Does the data need to be sent all
the way back to the user?

1611 August 2022Sam Eriksen 1627 March 2024Sam Eriksen

Interactions with data lake

Connect to data lake (caching)

More ‘efficient’ workflow

1. Run some analysis
2. Have the data saved as default
3. Get it sent back to you if you like

What are possible ways to integrate
this in the dask framework?

1711 August 2022Sam Eriksen 1727 March 2024Sam Eriksen

dask plugins

dask plugins docs

Storage Element

https://distributed.dask.org/en/stable/plugins.html

1811 August 2022Sam Eriksen 1827 March 2024Sam Eriksen

Automation via Scheduler

Things that can happen;
1. Run task when scheduler starts
2. Run task when task state changes
3. Run task when worker(s)

connects/disconnects

1911 August 2022Sam Eriksen 1927 March 2024Sam Eriksen

Automation via Scheduler

When tasks have processed and are in
memory,
Do something

2011 August 2022Sam Eriksen 2027 March 2024Sam Eriksen

Automation via Worker

Things that can happen;
1. Run task when worker

starts/shutsdown
2. Run task when task state changes

2111 August 2022Sam Eriksen 2127 March 2024Sam Eriksen

What we are working towards

1. Run some stage of analysis
2. Save output with RUCIO (above is REST API setup)
3. Implement a check before task starts to see if saved version exists – can also

happen on worker startup.

2211 August 2022Sam Eriksen

Summary and
plan going

forward

- Multi-site worker deployment

now works

- Dask plugins for data lake

interactions being actively

worked on. Once that it done,

caching becomes possible

- We are still in the x509 -> token

transition, so may be messy in

the short term (see talk by

Daniela)

22

Dask to DIRAC

interface

(dask-dirac)

Connect to

data lake

(caching)

Specify resource requirements

per analysis component

(portability)

Data lake to

DIRAC (via

Rucio)

Virtual analysis

facility

DIRAC

workflow

manager

Via tags
(slide 26)

REST
API

FileCatalog?

Caching at

analysis step

level

WP5
1 2

3

4

WP1

https://github.com/SWIFT-HEP/dask-dirac
https://indico.cern.ch/event/1107386/contributions/4827830/attachments/2438557/4176958/DIRAC_WMS_Resources_2022.pdf

2311 August 2022Sam Eriksen

Questions?

BACKUP

2511 August 2022Sam Eriksen 2527 March 2024Sam Eriksen

Making things reproducible

DIRAC certificate

- Get a conda env following: https://github.com/DIRACGrid/DIRACOS2
- Then run dirac-proxy-init –g gridpp_user

Get dask-dirac

• From pypi pip install dask-dirac

- (For development, use github)

Get AGC branch with edits

• Using AGC from SWIFT-HEP fork

• git clone -b se_daskdirac git@github.com:SWIFT-HEP/analysis-grand-challenge.git

• Edit config to use users certificate

Run CMS analysis

Documentations in dask-dirac is in progress

https://github.com/DIRACGrid/DIRACOS2
https://pypi.org/project/dask-dirac/
https://github.com/SWIFT-HEP/dask-dirac

2629 September 2023Sam Eriksen

The network explained

So where is the problem?

Imagine network boundary between

scheduler and workers

Scheduler port is accessible from workers

Worker port is ONLY accessible to

scheduler if connection is recycled (part of

ESTABLISHED --> firewall OK)

Default Dask operation: this can happen

at RANDOM (most likely for small # of

workers)

2729 September 2023Sam Eriksen

The network solution

• We know connections can be recycled and bypass firewall if they are part of an
ESTABLISHED connection​

• We also know of a working solution in our field: The HTCondor Connection Broker​
• Workers, schedulers, etc connect to a SHARED_PORT​
• As long as SHARED_PORT is open in firewall on a node accessible to both

scheduler and workers --> connection can be established​

• Most simple solution: Can the Dask Connection proxy be rewritten to hold worker
connections?​
• What are the downsides for 100-1000 worker nodes?

