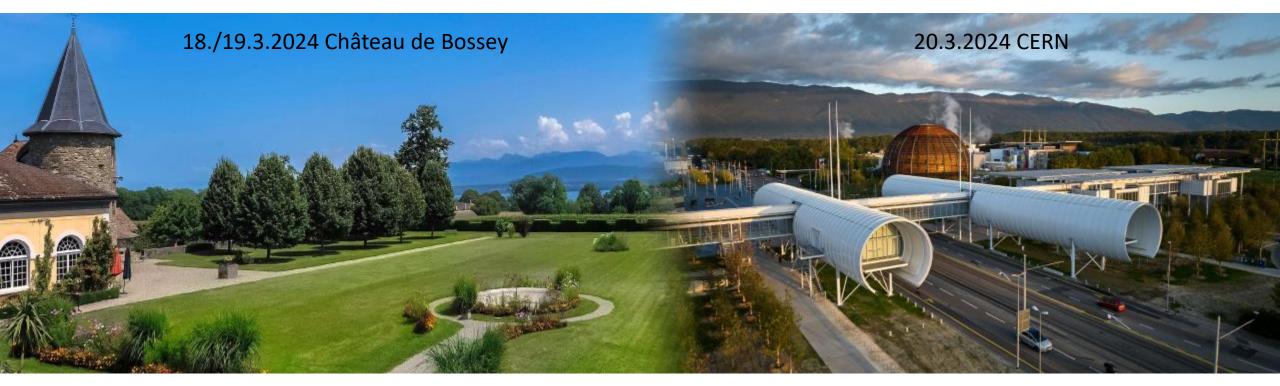


PAW'24 introductory slides

Oleg Denisov

INFN Torino, CERN

Jan Friedrich
Technische Universität München



Welcome to the inaugural

Physics at AMBER international Workshop '24

How AMBER was born...

~2009 early ideas of future high-intensity hadron beams for COMPASS are discussed

March 2016 Workshop "COMPASS beyond 2020"

September 2016: Physics Beyond Colliders initiative of CERN

June 2018 Workshop "New QCD Facility at the M2 SPS beamline"

August 2018 Letter of Intent: COMPASS++/AMBER

April 19, 2019 Towards a new collaboration: COMPASS++/AMBER Kick-off meeting

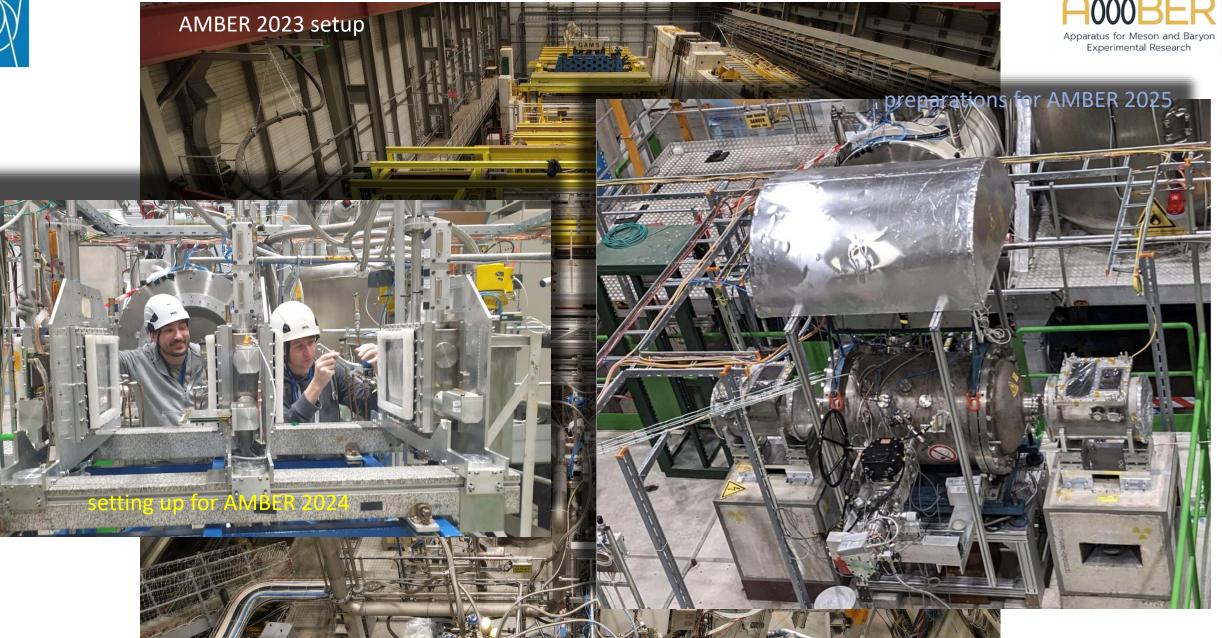
May 2021 First Collaboration Meeting (zoom)

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ±	high-pr. H2	2022 1 year	active TPC SciFi trigger silicon veto
Hard exclusive reactions	GPD E	160	10 ⁷	10	μ±	NH [↑] ₃	2022 2 years	recoil silicon, modified PT magnet
Input for DMS	p production cross-section	20-280	5 · 10 ⁵	25	P	LH2, LHe	2022 1 month	LHe target
p-induced Spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	\overline{P}	LH2	2022 2 years	target spectr.: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs Nucleon TMDs	~100	108	25-50	K^{\pm}, \overline{p}	NH₃ [†] , C/W	2026 2-3 years	"active absorber", vertex det.
Primakoff (RF)	Kaon polarizi- bility & pion life time	~100	5 · 10 ⁶	> 10	K-	Ni	n/e 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 10 ⁶	10-100	Κ ± π±	LH2, Ni	n/e 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 · 10 ⁶	25	K-	LH2	2026 1 year	recoil TOF forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5 · 10 ⁶	10-100	K^{\pm},π^{\pm}	from H to Pb	2026 1 year	

Table 5: Requirements for future programs at the M2 beam line after 2021. Standard muon beams are in blue, standard hadron beams in green, and RF-separated hadron beams in red.



Apparatus for Meson and Baryon Experimental Research


- AMBER has been approved as NA66 experiment in December 2020
- the Collaboration consists of ~200 physicists from 34 institutes
- at the M2 beamline at SPS: muon and hadron beams 60 – 250 GeV
- AMBER inherited, extended and modernized the 2-stage spectrometer of the COMPASS collaboration

- Approved Phase-1 physics:
 - \bar{p} production cross-sections
 - proton radius
 - pion/kaon structure functions

- Intended Phase-2 physics (>Long Shutdown 4):
 - strange-meson spectroscopy
 - kaon polarizability
 - prompt-photon production

PAW'24 Programme

3 days with 5 double-session blocks:

Monday morning: Antiproton production cross-sections (APX)

Monday afternoon: Proton radius measurement (PRM) 19:00 Social Dinner

Tuesday morning: Meson structure in Drell-Yan reactions (DY)

Tuesday afternoon: Ideas for a follow-up proposal (AMBER Phase-2)

Wednesday morning: Beams for AMBER (BE) on the CERN site

we thank our supporters:

...and Martin Zemko, Anne Lissajoux and the whole Local Organizing Committee!