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Motivation

Precision matters if lattice QCD is to have an impact on the proton radius puzzle
In lattice QCD as in the context of scattering experiments: radii extracted from the slope
of the electromagnetic form factors at Q2 = 0,

⟨r2⟩ = − 6

G(0)

∂G(Q2)

∂Q2

∣∣∣∣
Q2=0

(1)

Assume SU(2) isospin symmetry (isospin-breaking corrections are small) ⇒
quark-disconnected diagrams cancel in isovector combination, but not in the isoscalar one
Full calculation of the proton and neutron form factors separately necessitates explicit
treatment of the numerically challenging quark-disconnected contributions
Neglected in many previous lattice studies, in particular no simultaneous control of all
relevant systematics (continuum and infinite-volume extrapolation)
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QCD on the lattice

Coupling of QCD is large at large distances / low energies
Low-energy regime of QCD (typical hadronic scales) is
hence inaccessible to perturbative methods
Powerful tool for the non-perturbative study: lattice QCD
Replace space-time by a four-dimensional Euclidean lattice
Gauge-invariant UV-regulator for the quantum field theory
due to the momentum cut-off
Path integral becomes finite-dimensional and can be
computed numerically

a

L

T
ψ(x)

Uµ(x)

Allows a systematic extrapolation to the continuum and infinite-volume limit, a → 0 and
V → ∞
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Ensembles

Coordinated Lattice Simulations (CLS)1

Non-perturbatively O(a)-improved
Wilson fermions
Nf = 2 + 1: 2 degenerate light
quarks (mu = md), 1 heavier strange
quark (ms > mu,d)
trMq = 2ml +ms = const.
Tree-level improved Lüscher-Weisz
gauge action
O(a)-improved conserved vector
current
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Figure: Overview of the ensembles used in this study

1Bruno et al. 2015 [JHEP 2015 (2), 43]; Bruno, Korzec, and Schaefer 2017 [PRD 95, 074504].
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Nucleon two- and three-point correlation functions
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Measure the two- and three-point correlation functions of the nucleon
For three-point functions, Wick contractions yield connected and disconnected contribution
Compute the quark loops via a stochastic estimation using a frequency-splitting technique2

Extract the effective form factors Geff
E,M using the ratio method3

2Giusti et al. 2019 [EPJC 79, 586]; Cè et al. 2022 [JHEP 2022 (8), 220]; 3Korzec et al. 2009 [PoS 066, 139].
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Excited-state analysis

Cannot construct exact interpolating operator for the proton (any hadron) on the lattice
All possible states with the same quantum numbers contribute
Effect of heavier excited states suppressed exponentially with the distance between
operators in Euclidean time
For baryons, the relative statistical noise grows also exponentially with the source-sink
separation tsep = y0 − x0

Explicit treatment of the excited-state systematics required
Apply summation method with varying starting values tmin

sep for the linear fit

Perform weighted average over tmin
sep with weights given by a smooth window function4

Reduced human bias (same window on all ensembles), conservative error estimate

4Djukanovic et al. 2022 [PRD 106, 074503]; Agadjanov et al. 2023 [PRL 131, 261902].
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Direct Baryon χPT fits

⟨r2⟩ = − 6

G(0)

∂G(Q2)

∂Q2

∣∣∣∣
Q2=0

, µM = GM (0) ⇒ parametrize Q2-dependence of FFs

Combine this with the chiral, continuum, and infinite-volume extrapolation
Use expressions from covariant chiral perturbation theory5 to perform a simultaneous fit to
the pion-mass, Q2-, lattice-spacing, and finite-volume dependence of the form factors
Include contributions from the ρ (ω and ϕ) mesons in the isovector (isoscalar) channel
Reconstruct proton and neutron observables from separate fits to the isovector and
isoscalar form factors
Perform fits with various cuts in Mπ and Q2, as well as with different models for the
lattice-spacing and finite-volume dependence, in order to estimate systematic uncertainties
Large number of degrees of freedom ⇒ improved stability against lowering the Q2-cut

5Bauer, Bernauer, and Scherer 2012 [PRC 86, 065206].
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Zemach radius from the lattice

Atomic physics: hydrogen hyperfine splitting (HFS) influenced by proton’s EM structure
Relevant parameter deduced from the HFS: Zemach radius6,

rpZ = − 4

π

∫ ∞

0

dQ

Q2

(
Gp

E(Q
2)Gp

M (Q2)

µp
M

− 1

)
= − 2

π

∫ ∞

0

dQ2

(Q2)3/2

(
Gp

E(Q
2)Gp

M (Q2)

µp
M

− 1

)
(2)

Firm theoretical prediction of the Zemach radius required both to guide the atomic
spectroscopy experiments and for the interpretation of their results
BχPT including vector mesons only trustworthy for Q2 ≲ 0.6GeV2

Tail of the integrand suppressed7: contribution of the form factors above 0.6GeV2 to rZ
less than 0.9%

Extrapolate BχPT fit results using a z-expansion8 ansatz
6Zemach 1956 [Phys. Rev. 104, 1771]; Pachucki 1996 [PRA 53, 2092]; 7Lepage and Brodsky 1980 [PRD 22,

2157]; 8Hill and Paz 2010 [PRD 82, 113005]; Lee, Arrington, and Hill 2015 [PRD 92, 013013].
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Model average

Perform a weighted average over the results of all fit variations, using weights derived from
the Akaike Information Criterion9,

wi = exp

(
−1

2
BAICi

)/∑
j

exp

(
−1

2
BAICj

)
, BAICi = χ2

noaug,min,i+2nf,i+2nc,i,

(3)
where nf is the number of fit parameters and nc the number of cut data points
Strongly prefers fits with low nc, i.e., the least stringent cut in Q2 ⇒ apply a flat weight
over the different Q2-cuts to ensure strong influence of our low-momentum data
Determine the final cumulative distribution function (CDF) from the weighted sum of the
bootstrap distributions10

Quote median of this CDF together with the central 68% percentiles
9Akaike 1974 [IEEE Trans. Autom. Contr. 19, 716]; Neil and Sitison 2024 [PRD 109, 014510]; 10Borsányi et

al. 2021 [Nature 593, 51].
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Model-averaged proton form factors at the physical point
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Slope of the electric form factor closer to that of PRad11 than to that of A112

Good agreement with A1 for the magnetic form factor
11Xiong et al. 2019 [Nature 575, 147]; 12Bernauer et al. 2014 [PRC 90, 015206].
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Model-averaged neutron form factors at the physical point
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(Mostly) compatible with the collected experimental world data13 within our errors

13Ye et al. 2018 [PLB 777, 8].
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Electromagnetic radii and magnetic moments
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Zemach radius

Model-averaged result:
rpZ = 1.013(15) fm
⇒ low value favored
Agrees within 2σ with most of
the experimental determinations
Our estimate is ∼ 80%
correlated with the
electromagnetic radii (based on
the same form factor data)
Low result for rpZ expected, no
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Conclusions

Determination of the electromagnetic form factors of the proton and neutron from lattice
QCD including connected and disconnected contributions, as well as a full error budget
Chiral, continuum, and infinite volume extrapolation by fitting our form factors to the
expressions from covariant baryon chiral perturbation theory
Magnetic moments of the proton and neutron agree well with the experimental values
Small electric and magnetic radii of the proton favored
Competitive errors, in particular for the magnetic radii
First lattice calculation of the Zemach radius of the proton → small value favored (80%
correlation with electromagnetic radii)
Further investigations required, in particular for the magnetic proton radius
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Backup slides
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From correlation functions to form factors

Average over the forward- and backward-propagating nucleon and over x-, y-, and
z-polarization for the disconnected part
Calculate the ratios

RVµ(q; tsep, t) =
C3,Vµ(q; tsep, t)

C2(0; tsep)

√
C̄2(q; tsep − t)C2(0; t)C2(0; tsep)

C2(0; tsep − t)C̄2(q; t)C̄2(q; tsep)
, (4)

where tsep = y0 − x0, t = z0 − x0, and C̄2(q; tsep) =
∑

q̃∈qC2(q̃; tsep)
/∑

q̃∈q 1

At zero sink momentum, the effective form factors can be computed from the ratios as

Geff
E (Q2; tsep, t) =

√
2Eq

m+ Eq
RV0(q; tsep, t), (5)

Geff
M (Q2; tsep, t) =

√
2Eq(m+ Eq)

∑
j,k ϵijkqk ReR

Γi
Vj
(q; tsep, t)∑

j ̸=i q
2
j

(6)
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Excited-state analysis

Sum the effective form factors over the operator insertion time,

SE,M (Q2; tsep) =

tsep−tskip∑
t=tskip

Geff
E,M (Q2; t, tsep), tskip = 2a (7)

For tsep → ∞, the slope as a function of tsep is given by the ground-state form factor,

SE,M (Q2; tsep)
tsep→∞−−−−−→ CE,M (Q2) +

1

a
(tsep + a− 2tskip)GE,M (Q2) (8)

Perform a weighted average over tmin
sep , where the weights are given by a smooth window

function,

Ĝ =

∑
iwiGi∑
iwi

, wi = tanh
ti − tloww

∆tw
− tanh

ti − tupw
∆tw

, (9)

where ti is the value of tmin
sep in the i-th fit, tloww = 0.9 fm, tupw = 1.1 fm and ∆tw = 0.08 fm
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Excited-state analysis: window average on E300
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Excited-state analysis: window average on D450
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Q2-dependence of the isovector form factors on E300
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Direct BχPT fit describes data very well
Reduced error due to the inclusion of several ensembles in one fit
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Q2-dependence of the isoscalar form factors on E300
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Q2-dependence of the isovector form factors on E250
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Q2-dependence of the isoscalar form factors on E250
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Residuals of the BχPT fits
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Histograms
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Q-Q plots
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Disambiguating the statistical and systematic uncertainties

Scale the statistical variances of the individual fit results by a factor of λ = 2

Repeat the model averaging procedure
Assumptions:

Above rescaling only affects the statistical error of the averaged result
Statistical and systematic errors add in quadrature

Contributions of the statistical and systematic errors to the total error,

σ2
stat =

σ2
scaled − σ2

orig

λ− 1
, σ2

syst =
λσ2

orig − σ2
scaled

λ− 1
(10)

Consistency check: results are almost independent of λ (if it is chosen not too small)
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CDFs of the electromagnetic radii and magnetic moment of the proton
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Final results

⟨r2E⟩u−d = (0.785± 0.022± 0.026) fm2

⟨r2M ⟩u−d = (0.663± 0.011± 0.008) fm2

µu−d
M = 4.62± 0.10± 0.07

⟨r2E⟩u+d−2s = (0.554± 0.018± 0.013) fm2

⟨r2M ⟩u+d−2s = (0.657± 0.030± 0.031) fm2

µu+d−2s
M = 2.47± 0.11± 0.10

⟨r2E⟩p = (0.672± 0.014± 0.018) fm2

⟨r2M ⟩p = (0.658± 0.012± 0.008) fm2

µp
M = 2.739± 0.063± 0.018

⟨r2E⟩n = (−0.115± 0.013± 0.007) fm2

⟨r2M ⟩n = (0.667± 0.011± 0.016) fm2

µn
M = −1.893± 0.039± 0.058
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z-expansion

z-expansion: model-independent description of the Q2-dependence of the form factors
Map domain of analyticity of the form factors onto the unit circle,

z(Q2) =

√
τcut +Q2 −

√
τcut − τ0√

τcut +Q2 +
√
τcut − τ0

, (11)

where τcut = 4M2
π,phys, and we employ τ0 = 0

Expand the form factors as

GE(Q
2) =

n∑
k=0

akz(Q
2)k, GM (Q2) =

n∑
k=0

bkz(Q
2)k (12)

We fix GE(0) = a0 = 1, use n = 7, and incorporate the 4 sum rules for each form factor
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Zemach integrand
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z-expansion agrees very well with BχPT parametrization in the region where it is fitted
For the integration, smoothly replace the BχPT parametrization by the z-expansion
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Crosscheck of direct fits with z-expansion: proton magnetic moment

Use n = 2 and no sum rules
(focus on low-momentum
region)
Magnetic moment significantly
smaller than direct fits which
are compatible with experiment
Direct fits use more data in one
fit ⇒ increased stability against
statistical fluctuations
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Crosscheck of direct fits with z-expansion: proton electromagnetic radii
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Radii in good agreement with direct fits, albeit with significantly larger errors
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