Miguel Salg, Dalibor Djukanovic, Georg von Hippel, Harvey B. Meyer, Konstantin Ottnad, Hartmut Wittig

PAW’24, March 18, 2024
Outline

1 Motivation

2 Lattice setup

3 Data analysis

4 Model average and final results

5 Conclusions and outlook
Motivation

- Precision matters if lattice QCD is to have an impact on the proton radius puzzle
- In lattice QCD as in the context of scattering experiments: radii extracted from the slope of the electromagnetic form factors at $Q^2 = 0$,
 \[
 \langle r^2 \rangle = -\frac{6}{G(0)} \left. \frac{\partial G(Q^2)}{\partial Q^2} \right|_{Q^2=0}
 \]
 (1)
- Assume SU(2) isospin symmetry (isospin-breaking corrections are small) \Rightarrow quark-disconnected diagrams cancel in isovector combination, but not in the isoscalar one
- Full calculation of the proton and neutron form factors separately necessitates explicit treatment of the numerically challenging quark-disconnected contributions
- Neglected in many previous lattice studies, in particular no simultaneous control of all relevant systematics (continuum and infinite-volume extrapolation)
Outline

1 Motivation
2 Lattice setup
3 Data analysis
4 Model average and final results
5 Conclusions and outlook
QCD on the lattice

- Coupling of QCD is large at large distances / low energies
- Low-energy regime of QCD (typical hadronic scales) is hence inaccessible to perturbative methods
- Powerful tool for the non-perturbative study: lattice QCD
- Replace space-time by a four-dimensional Euclidean lattice
- Gauge-invariant UV-regulator for the quantum field theory due to the momentum cut-off
- Path integral becomes finite-dimensional and can be computed numerically
- Allows a systematic extrapolation to the continuum and infinite-volume limit, \(a \to 0 \) and \(V \to \infty \)
Ensembles

Coordinated Lattice Simulations (CLS) \(^1\)

- Non-perturbatively $O(a)$-improved Wilson fermions
- $N_f = 2 + 1$: 2 degenerate light quarks ($m_u = m_d$), 1 heavier strange quark ($m_s > m_{u,d}$)
- $\text{tr} \, M_q = 2m_l + m_s = \text{const.}$
- Tree-level improved Lüscher-Weisz gauge action
- $O(a)$-improved conserved vector current

\(^1\)Bruno et al. 2015 [JHEP 2015 (2), 43]; Bruno, Korzec, and Schaefer 2017 [PRD 95, 074504].
Nucleon two- and three-point correlation functions

- Measure the two- and three-point correlation functions of the nucleon
- For three-point functions, Wick contractions yield connected and disconnected contribution
- Compute the quark loops via a stochastic estimation using a frequency-splitting technique\(^2\)
- Extract the effective form factors \(C_{E,M}^{\text{eff}}\) using the ratio method\(^3\)

\(^2\)Giusti et al. 2019 [EPJC 79, 586]; Cè et al. 2022 [JHEP 2022 (8), 220]; \(^3\)Korzec et al. 2009 [PoS 066, 139].
Outline

1. Motivation
2. Lattice setup
3. Data analysis
4. Model average and final results
5. Conclusions and outlook
Excited-state analysis

- Cannot construct exact interpolating operator for the proton (any hadron) on the lattice
- All possible states with the same quantum numbers contribute
- Effect of heavier excited states suppressed exponentially with the distance between operators in Euclidean time
- For baryons, the relative statistical noise grows also exponentially with the source-sink separation $t_{\text{sep}} = y_0 - x_0$
- Explicit treatment of the excited-state systematics required
- Apply summation method with varying starting values $t_{\text{sep}}^{\text{min}}$ for the linear fit
- Perform weighted average over $t_{\text{sep}}^{\text{min}}$ with weights given by a smooth window function4
- Reduced human bias (same window on all ensembles), conservative error estimate

4Djukanovic et al. 2022 [PRD 106, 074503]; Agadjanov et al. 2023 [PRL 131, 261902].
Direct Baryon χPT fits

- $\langle r^2 \rangle = -\frac{6}{G(0)} \left. \frac{\partial G(Q^2)}{\partial Q^2} \right|_{Q^2=0}$, $\mu_M = G_M(0) \Rightarrow$ parametrize Q^2-dependence of FFs

- Combine this with the chiral, continuum, and infinite-volume extrapolation

- Use expressions from covariant chiral perturbation theory\(^5\) to perform a simultaneous fit to the pion-mass, Q^2-, lattice-spacing, and finite-volume dependence of the form factors

- Include contributions from the ρ (ω and ϕ) mesons in the isovector (isoscalar) channel

- Reconstruct proton and neutron observables from separate fits to the isovector and isoscalar form factors

- Perform fits with various cuts in M_π and Q^2, as well as with different models for the lattice-spacing and finite-volume dependence, in order to estimate systematic uncertainties

- Large number of degrees of freedom \Rightarrow improved stability against lowering the Q^2-cut

\(^5\)Bauer, Bernauer, and Scherer 2012 [PRC 86, 065206].
Zemach radius from the lattice

- Atomic physics: hydrogen hyperfine splitting (HFS) influenced by proton’s EM structure
- Relevant parameter deduced from the HFS: Zemach radius r^p_Z,

$$ r^p_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left(\frac{G^p_E(Q^2)G^p_M(Q^2)}{\mu^p_M} - 1 \right) = -\frac{2}{\pi} \int_0^\infty \frac{dQ^2}{(Q^2)^{3/2}} \left(\frac{G^p_E(Q^2)G^p_M(Q^2)}{\mu^p_M} - 1 \right) $$

(2)

- Firm theoretical prediction of the Zemach radius required both to guide the atomic spectroscopy experiments and for the interpretation of their results
- $B\chi PT$ including vector mesons only trustworthy for $Q^2 \lesssim 0.6\text{ GeV}^2$
- Tail of the integrand suppressed: contribution of the form factors above 0.6 GeV^2 to r_Z less than 0.9%
- Extrapolate $B\chi PT$ fit results using a z-expansion ansatz

Outline

1. Motivation
2. Lattice setup
3. Data analysis
4. Model average and final results
5. Conclusions and outlook
Model average

- Perform a weighted average over the results of all fit variations, using weights derived from the Akaike Information Criterion9,

\[w_i = \exp \left(-\frac{1}{2} \text{BAIC}_i \right) / \sum_j \exp \left(-\frac{1}{2} \text{BAIC}_j \right), \quad \text{BAIC}_i = \chi^2_{\text{noaug, min, } i} + 2n_{f,i} + 2n_{c,i}, \]

where \(n_f \) is the number of fit parameters and \(n_c \) the number of cut data points

- Strongly prefers fits with low \(n_c \), \textit{i.e.}, the least stringent cut in \(Q^2 \) \(\Rightarrow \) apply a flat weight over the different \(Q^2 \)-cuts to ensure strong influence of our low-momentum data

- Determine the final cumulative distribution function (CDF) from the weighted sum of the bootstrap distributions10

- Quote median of this CDF together with the central 68\% percentiles

Slope of the electric form factor closer to that of PRad11 than to that of A112

Good agreement with A1 for the magnetic form factor

11Xiong et al. 2019 [Nature 575, 147]; 12Bernauer et al. 2014 [PRC 90, 015206].
(Mostly) compatible with the collected experimental world data13 within our errors

13Ye et al. 2018 [PLB 777, 8].
Magnetic moments reproduced, low value for $\sqrt{\langle r_E^2 \rangle_p}$ clearly favored, $\sqrt{\langle r_M^2 \rangle_p}$ agrees with A1
Zemach radius

- Model-averaged result:
 \[r_Z^p = 1.013(15) \text{ fm} \]
 \[\Rightarrow \text{low value favored} \]

- Agrees within \(2\sigma\) with most of the experimental determinations

- Our estimate is \(\sim 80\%\) correlated with the electromagnetic radii (based on the same form factor data)

- Low result for \(r_Z^p\) expected, no independent puzzle
Outline

1 Motivation
2 Lattice setup
3 Data analysis
4 Model average and final results
5 Conclusions and outlook
Conclusions

- Determination of the electromagnetic form factors of the proton and neutron from lattice QCD including connected and disconnected contributions, as well as a full error budget
- Chiral, continuum, and infinite volume extrapolation by fitting our form factors to the expressions from covariant baryon chiral perturbation theory
- Magnetic moments of the proton and neutron agree well with the experimental values
- Small electric \(\text{and} \) magnetic radii of the proton favored
- Competitive errors, in particular for the magnetic radii
- First lattice calculation of the Zemach radius of the proton \(\rightarrow \) small value favored (80\% correlation with electromagnetic radii)
- Further investigations required, in particular for the magnetic proton radius
Backup slides
From correlation functions to form factors

- Average over the forward- and backward-propagating nucleon and over x-, y-, and z-polarization for the disconnected part
- Calculate the ratios

\[
R_{V_{\mu}}(q; t_{\text{sep}}, t) = \frac{C_{3, V_{\mu}}(q; t_{\text{sep}}, t)}{C_{2}(0; t_{\text{sep}})} \sqrt{\frac{\bar{C}_{2}(q; t_{\text{sep}} - t)C_{2}(0; t)C_{2}(0; t_{\text{sep}})}{C_{2}(0; t_{\text{sep}} - t)\bar{C}_{2}(q; t)\bar{C}_{2}(q; t_{\text{sep}})}},
\]

(4)

where \(t_{\text{sep}} = y_{0} - x_{0}, \ t = z_{0} - x_{0}, \) and \(\bar{C}_{2}(q; t_{\text{sep}}) = \sum_{\tilde{q} \in q} C_{2}(\tilde{q}; t_{\text{sep}})/\sum_{\tilde{q} \in q} 1 \)

- At zero sink momentum, the effective form factors can be computed from the ratios as

\[
G_{E}^{\text{eff}}(Q^{2}; t_{\text{sep}}, t) = \sqrt{\frac{2E_{q}}{m + E_{q}}} R_{V_{0}}(q; t_{\text{sep}}, t),
\]

(5)

\[
G_{M}^{\text{eff}}(Q^{2}; t_{\text{sep}}, t) = \sqrt{2E_{q}(m + E_{q})} \sum_{j, k} \epsilon_{ijk} q_{k} \text{Re} R_{V_{j}}^{\Gamma_{i}}(q; t_{\text{sep}}, t) \frac{\sum_{j \neq i} q_{j}^{2}}{\sum_{j \neq i} q_{j}^{2}},
\]

(6)
Excited-state analysis

- Sum the effective form factors over the operator insertion time,

\[S_{E,M}(Q^2; t_{sep}) = \sum_{t=t_{skip}}^{t_{sep}-t_{skip}} G_{E,M}^{\text{eff}}(Q^2; t, t_{sep}), \quad t_{skip} = 2a \] (7)

- For \(t_{sep} \to \infty \), the slope as a function of \(t_{sep} \) is given by the ground-state form factor,

\[S_{E,M}(Q^2; t_{sep}) \xrightarrow{t_{sep} \to \infty} C_{E,M}(Q^2) + \frac{1}{a}(t_{sep} + a - 2t_{skip})G_{E,M}(Q^2) \] (8)

- Perform a weighted average over \(t_{sep}^{\text{min}} \), where the weights are given by a smooth window function,

\[\hat{G} = \frac{\sum_i w_i G_i}{\sum_i w_i}, \quad w_i = \tanh \left(\frac{t_i - t_{w}^{\text{low}}}{\Delta t_w} \right) - \tanh \left(\frac{t_i - t_{w}^{\text{up}}}{\Delta t_w} \right), \] (9)

where \(t_i \) is the value of \(t_{sep}^{\text{min}} \) in the \(i \)-th fit, \(t_{w}^{\text{low}} = 0.9 \) fm, \(t_{w}^{\text{up}} = 1.1 \) fm and \(\Delta t_w = 0.08 \) fm
Excited-state analysis: window average on E300

E300 ($M_\pi = 176$ MeV, $a = 0.049$ fm)
Excited-state analysis: window average on D450

D450 ($M_\pi = 218$ MeV, $a = 0.076$ fm)

Graph showing $G_{E}^{d}(Q^{2} = 0.065$ GeV2) and $G_{M}^{d}(Q^{2} = 0.065$ GeV2) with window average.
Q^2-dependence of the isovector form factors on E300

- Direct $B\chi$PT fit describes data very well
- Reduced error due to the inclusion of several ensembles in one fit
Q^2-dependence of the isoscalar form factors on E300

Covariant BχPT fit on E300 ($M_r = 176$ MeV)

\[G_E^{u+d}(Q^2) = \frac{G_E^{u+d}(Q^2)}{G_E^{u+d}(0)} \]

- BχPT fit
- original summation data
- corrected summation data

Miguel Salg (JGU Mainz)
Q^2-dependence of the isovector form factors on E250

Covariant BχPT fit on E250 ($M_r = 130$ MeV)

BχPT fit

original summation data

corrected summation data

Covariant BχPT fit on E250 ($M_r = 130$ MeV)

BχPT fit

original summation data

corrected summation data
Q^2-dependence of the isoscalar form factors on E250

Covariant BχPT fit on E250 ($M_r = 130$ MeV)

- BχPT fit
- original summation data
- corrected summation data

Graphs:

- $G_E^{u+d}(Q^2)/G_E^{u+d}(0)$
- $G_{M}^{u+d}(Q^2)/G_{M}^{u+d}(0)$

Axes:

- t_0Q^2
- 0.00 to 0.30

- $G_E^{u+d}(Q^2)$
- 0.3 to 1.0

- $G_{M}^{u+d}(Q^2)$
- -0.2 to 1.4
Residuals of the B\(\chi\)PT fits

B\(\chi\)PT fit to the isovector form factors

B\(\chi\)PT fit to the isoscalar form factors

Miguel Salg (JGU Mainz)
Histograms

BχPT fit to the isovector form factors

BχPT fit to the isoscalar form factors

Miguel Salg (JGU Mainz)

Proton EM FFs and radii from lattice QCD

PAW’24, March 18, 2024
Q-Q plots

BχPT fit to the isovector form factors

Empirical value vs Expected value

KS-test p-value: 73.17%

BχPT fit to the isoscalar form factors

Empirical value vs Expected value

KS-test p-value: 80.45%
Disambiguating the statistical and systematic uncertainties

- Scale the statistical variances of the individual fit results by a factor of $\lambda = 2$
- Repeat the model averaging procedure
- Assumptions:
 - Above rescaling only affects the statistical error of the averaged result
 - Statistical and systematic errors add in quadrature
- Contributions of the statistical and systematic errors to the total error,
 \[
 \sigma_{\text{stat}}^2 = \frac{\sigma_{\text{scaled}}^2 - \sigma_{\text{orig}}^2}{\lambda - 1}, \quad \sigma_{\text{syst}}^2 = \frac{\lambda \sigma_{\text{orig}}^2 - \sigma_{\text{scaled}}^2}{\lambda - 1}
 \] (10)
- Consistency check: results are almost independent of λ (if it is chosen not too small)
CDFs of the electromagnetic radii and magnetic moment of the proton

\[\langle r^2 \rangle_p \text{ [fm}^2 \text{]} \]

\[\langle r^2 \rangle_M \text{ [fm}^2 \text{]} \]

\[\mu_p \text{ [MeV} \text{fm}] \]

\[P(y) \]

Miguel Salg (JGU Mainz)
\(\langle r_E^2 \rangle^{u-d} = (0.785 \pm 0.022 \pm 0.026) \text{ fm}^2 \)
\(\langle r_M^2 \rangle^{u-d} = (0.663 \pm 0.011 \pm 0.008) \text{ fm}^2 \)
\(\mu_M^{u-d} = 4.62 \pm 0.10 \pm 0.07 \)

\(\langle r_E^2 \rangle^{u+d-2s} = (0.554 \pm 0.018 \pm 0.013) \text{ fm}^2 \)
\(\langle r_M^2 \rangle^{u+d-2s} = (0.657 \pm 0.030 \pm 0.031) \text{ fm}^2 \)
\(\mu_M^{u+d-2s} = 2.47 \pm 0.11 \pm 0.10 \)

\(\langle r_E^2 \rangle^p = (0.672 \pm 0.014 \pm 0.018) \text{ fm}^2 \)
\(\langle r_M^2 \rangle^p = (0.658 \pm 0.012 \pm 0.008) \text{ fm}^2 \)
\(\mu_M^p = 2.739 \pm 0.063 \pm 0.018 \)

\(\langle r_E^2 \rangle^n = (-0.115 \pm 0.013 \pm 0.007) \text{ fm}^2 \)
\(\langle r_M^2 \rangle^n = (0.667 \pm 0.011 \pm 0.016) \text{ fm}^2 \)
\(\mu_M^n = -1.893 \pm 0.039 \pm 0.058 \)
z-expansion

- z-expansion: model-independent description of the Q^2-dependence of the form factors
- Map domain of analyticity of the form factors onto the unit circle,

$$
z(Q^2) = \frac{\sqrt{\tau_{\text{cut}} + Q^2} - \sqrt{\tau_{\text{cut}} - \tau_0}}{\sqrt{\tau_{\text{cut}} + Q^2} + \sqrt{\tau_{\text{cut}} - \tau_0}},
$$

where $\tau_{\text{cut}} = 4M^2_{\pi,\text{phys}}$, and we employ $\tau_0 = 0$

- Expand the form factors as

$$G_E(Q^2) = \sum_{k=0}^{n} a_k z(Q^2)^k, \quad G_M(Q^2) = \sum_{k=0}^{n} b_k z(Q^2)^k$$

- We fix $G_E(0) = a_0 = 1$, use $n = 7$, and incorporate the 4 sum rules for each form factor
- \(z \)-expansion agrees very well with \(B\chi PT \) parametrization in the region where it is fitted
- For the integration, smoothly replace the \(B\chi PT \) parametrization by the \(z \)-expansion
Crosscheck of direct fits with z-expansion: proton magnetic moment

- Use $n = 2$ and no sum rules (focus on low-momentum region)
- Magnetic moment significantly smaller than direct fits which are compatible with experiment
- Direct fits use more data in one fit \Rightarrow increased stability against statistical fluctuations

![Graph showing comparison between direct fits and z-expansion results]

z-expansion, $Q_{\text{cut}}^2 = 0.6 \text{ GeV}^2$
Crosscheck of direct fits with z-expansion: proton electromagnetic radii

Radii in good agreement with direct fits, albeit with significantly larger errors