

MUSE - Status of proton radius measurement

MATT NICOL - UNIVERSITY OF SOUTH CAROLINA

18TH MARCH 2024

PAW24

SUPPORTED IN PARTS BY THE U.S. NATIONAL SCIENCE FOUNDATION: NSF PHY-2111050 (USC).

THE MUSE EXPERIMENT IS SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, THE U.S. NATIONAL SCIENCE FOUNDATION, THE PAUL SCHERRER INSTITUTE, AND THE US-ISRAEL BINATIONAL SCIENCE FOUNDATION

Contents

- Proton radius puzzle
- Overview of current and future experiments
- Motivation for MUSE
- MUSE experiment
- Status of MUSE

Proton Radius Puzzle

Discrepancy between radius measured by electrons and muons

SHRINKING

New value for charge radius of key subatomic particle

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENC

nature

• (2040)

Nature 466, 213 (2010)

8 July 2010 www.nature.com/nature £10

MARINE OIL SPILLS Get it right next time BIODIVERSITY AND BUSINESS The importance of costing the Earth

EARLY EUROPEANS

Venturing n early Pleiste

Proton Radius Puzzle

H

0.02

0.04

CODATA'14 (2015) CODATA'18 (2021) Antognini (2013) Bernauer [A1] (2010) Zhan (2011) Xiong [PRad] (2019) Mihovilovic (2021) Beyer (2017) Fleurbaey (2018) Bezginov (2019) Grinin (2020) Brandt (2022) Projected MUSE -0.02 0.00 -0.04 $r_p - r_{\mu H}$ (fm)

Inconsistent electron-scattering data

Inconsistent hydrogen-spectroscopy data

No adequate muon-scattering data yet

Update on scattering experiments

Update on scattering experiments

 Many different scattering experiments underway and to come

 MUSE is the only simultaneous electron- and muon-scattering experiment

MUSE is first muon-scattering experimentAMBER to follow soon

Beam	e−	e+	μ-	µ+	
PRad	√				
Mainz 2010	\checkmark				Data taken
Mainz ISR	\checkmark				
Mainz Jet	\checkmark				
MUSE PSI	√	√	√	√	Running
ULQ2 ELPH	\checkmark				
AMBER CERN			√	√	
MAGIX MESA	\checkmark				Future
PRES MAMI	√				
PRad-II JLab	√				

MUSE – Accessing further physics

Lepton-universality

- Simultaneous electron and muon scattering experiment
- Comparison gives direct test of lepton non-universality

Radiative Corrections

- Muons have a mass approximately 200 times that of an electron
 - Radiative effects are much smaller
- Comparing these results can provide a greater understanding of these effects

Two Photon Exchange

Both polarities provide access to explore two-photon contributions

W. Xiong and C. Peng, ``Proton Electric Charge Radius from Lepton Scattering,' Universe 9, no.4, 182 (2023), doi:10.3390/universe9040182, [arXiv:2302.13818 [nucl-ex]].

MUSE: MUon Scattering Experiment at PSI

The world's most powerful low-energy separated p beam •Simultaneous, separated beam of (π^-, e^-, μ^-) or (π^+, e^+, μ^+) on liquid H₂ target •Beam momentum of 100 – 500 MeV available gives a broad low Q² range

πM1 MUSE Beamline

Secondary beams of π , e, μ produced at M-target with 590 MeV protons

Beam properties well understood with TRANSPORT, TURTLE, and G4Beamline (E. Cline et al., PRC105, 055201 (2022))

MUSE Experiment

Beam particle tracking

- Liquid hydrogen target
- Scattered lepton tracking
- 3.3 MHz total beam flux
 - ≈ 2-15% μ's
 - ≈ 10-98% e's
 - ≈ 0-80% π's
- •p = 115, 160, 210 MeV/c

Calorimeter

Scattered Particle Scintillator (SPS)

MUSE Experiment

- Beam particle tracking
- Liquid hydrogen target
- Scattered lepton tracking
- ■ $Q^2 \approx 0.002 0.07 \text{ GeV}^2$
- ■θ ≈ 20° 100°
- ■180° coverage in Ø

Beam Monitor (BM)

Straw-Tube Tracker (STT)

MUSE Experiment – Beam Particle Separation

 π ,e, μ beam particles separated by RF

MUSE Experiment – Reaction Identification

 Muons decay after identification in beamline detectors

 Time of Flight used for reaction identification

Muon scattering events

p = +115 MeV/c, Left: Reconstructed Z vertex, Right: Reconstructed angle

Muon decay events

p = +115 MeV/c, Left: Reconstructed Z vertex, Right: Reconstructed angle

Vertex Reconstruction

P. Roy et al., A Liquid Hydrogen Target for the MUSE Experiment at PSI, NIM A, 2019, https://doi.org/10.1016/j.nima.2019.162874

Status of MUSE

- Currently taking data
 - ~5 months beamtime allocation received this year
 - 2 years data taking left

Ongoing:

Extracting preliminary, blinded cross sections with good agreement to simulation within blinding

Future:

- Calibrations and alignment
- Simulations (radiative corrections, digitization, trigger)
- Systematic errors

MUSE Publications

 R. Gilman, E. J. Downie, G. Ron, et al., Technical Design Report for the Paul Scherrer Institute Experiment, arXiv, 2017, <u>https://doi.org/10.48550/arXiv.1709.09753</u>

- A. Liyanage, M. Kohl, J. Nazeer, T. Patel, Development of GEM Detectors at Hampton University, arXiv, 2018, <u>https://doi.org/10.48550/arXiv.1803.00132</u>
- E.O. Cohen et al., Development of a scintillating-fiber beam detector for the MUSE experiment, NIM A, 2016, <u>https://doi.org/10.1016/j.nima.2016.01.044</u>
- P. Roy et al., A Liquid Hydrogen Target for the MUSE Experiment at PSI, NIM A, 2019, <u>https://doi.org/10.1016/j.nima.2019.162874</u>

 T. Rostomyan et al., Timing Detectors with SiPM read-out for the MUSE Experiment at PSI, NIM A, 2020, <u>https://doi.org/10.1016/j.nima.2020.164801</u>

E. Cline, J. Bernauer, E.J. Downie, R. Gilman, MUSE: The MUon Scattering Experiment, Review of Particle Physics at PSI, 2021, <u>https://doi.org/10.21468/SciPostPhysProc.5</u>

- E. Cline et al., Characterization of Muon and Electron Beams in the Paul Scherrer Institute PiM1 Channel for the MUSE, Experiment, PRC 105, 055201 (2022); arXiv: 2109.09508, <u>https://doi.org/10.1103/PhysRevC.105.055201</u>
- J.C. Bernauer et al., Blinding for precision scattering experiments: The MUSE approach as a case study, arXiv, 2023, https://doi.org/10.48550/arXiv.2310.11469

Conclusion

Proton radius puzzle still unsolved

Large variety of scattering experiments, e and μ

MUSE will play a crucial role in the proton radius puzzle

- MUSE will expand our understanding in other areas
 - Lepton universality
 - Radiative corrections
 - Two photon exchange

Thank You!