Radiative Corrections for Proton Radius Measurements in Scattering Experiments

Andrei Afanasev

The George Washington University, Washington, DC, USA

Physics at AMBER international Workshop 18-20 March 2024, CERN, Switzerland

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

Work supported by National Science Foundation Award PHY-2111063

Plan of talk

Radiative corrections for charged lepton scattering

. Update on modelling and theory uncertainties

Two-photon exchange effects

- Differences between muon scattering and electron scattering on a proton target
- . Charge asymmetries

Electron vs muon scattering

. Summary

Proton Radius Measurements/Scattering Kinematics

Table from review arXiv:2306.14578 (Afanasev, Bernauer, Blunden et al, Radiative Corrections: From Medium to High Energy Experiments EPJA 2024)

	Measured particle	$E_{ m beam} \; [{ m GeV}]$	heta [degrees]	$Q^2 \; [{ m GeV}/c^2]$	Effect of radius on form factor	Fractional contri- bution of G_E to cross section
GMp-12 [63]	e'	2.222 - 10.587	24.25 - 53.5	1.577 - 15.76	>100%	0.2-11.9%
$MAMI \; FF \; [150, \; 178]$	e'	0.180 - 0.855	15.5-135	0.0033 - 0.98	2-59%	0.23-99.4%
MAMI High- Q^2 [179]	e'	0.720 - 1.500	15-120	0.35-1.95	>100%	1.3-92.5%
MAMI ISR [180, 181]	e'	0.195,0.330	15.21	0.001 - 0.004	0.6-2.4%	> 98%
MAMI Jet Target [182]	e'	0.315	15-40	0.007 - 0.043	6-39%	71.2 - 98.5%
PRad [183]	e'	1.1, 2.2	0.7-6.5	0.00022 - 0.058	0.13-35%	87.6-100%
AMBER [176]	$\mu' + p$	60,100	N/A	0.001 - 0.04	0.6-24%	91-100%
MESA [184]	e'	0.02 - 0.105	15-165	0.000027 - 0.035	0.016- $21%$	91-100%
MUSE [174, 175]	e',μ',π'	0.115 - 0.21	20-100	0.0016 - 0.082	0.96-4.9%	58-99.6%
PRAD-II [185]	e'	0.7,1.4,2.1	0.7-6.5	0.00007 - 0.056	0.042-34%	88.6-100%
ULQ2 [186]	e'	0.01 - 0.06	0.7 - 6.5	0.000027 - 0.012	0.016-7.2%	56-100%

Table 1: Characteristic parameters of published and upcoming proton form factor measurements

-H. Gao, M. Vanderhaeghen, The proton charge radius, Rev. Mod. Phys. **94**, 015002 (2022)

-C. Peset, A. Pineda, and O. Tomalak, The proton radius (puzzle?) and its relatives, Prog. Part. Nucl. Phys. **121**, 103901 (2021)

-J.-P. Karr, D. Marchand, E. Voutier, The proton size,

Nature Reviews Physics **2**, 601–614 (2020)

THE GEORGE WASHINGTON UNIVERSITY

Bremsstrahlung for Relativistic vs Nonrelativistic Lepton Scattering

- Accelerated charge always radiates, but the magnitude of the effect depends on kinematics
- . See Bjorken&Drell (Vol.1, Ch.8):
 - For large $Q^2 >> m_1^2$ the rad.correction is enhanced by a large logarithm, $\log(Q^2/m_1^2) \sim 15$ for 1GeV² momentum transfers by electrons vs 4.6 for muons => rad corrections due to brem for muons are smaller by $\sim 3x$
 - . For small Q²<<m_l^2, rad.correction suppressed by Q²/m_e^2
 - . For intermediate $Q^2 \sim m_1^2$, neither enhancement nor suppression, rad correction of the order $2\alpha/\pi$

Two-Photon Exchange Overview

Progress in Particle and Nuclear Physics 95 (2017) 245-278

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Two-photon exchange in elastic electron-proton scattering

A. Afanasev^{a,*}, P.G. Blunden^{b,c}, D. Hasell^d, B.A. Raue^e

^a George Washington University, Washington, DC, USA

^b University of Manitoba, Winnipeg, MB, Canada

^c Jefferson Lab, Newport News, VA, USA

^d Massachusetts Institute of Technology, Cambridge, MA, USA

e Florida International University, Miami, FL, USA

McMule extension Engel et al, arXiv:2307.16831 Talukdar et al, Phys. Rev. D 104, 053001 (2021)

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

RC to elastic lp scattering **Basic contributions** Born contribution Real photon emission Virtual particle contribution **Computational approaches:** Ilyichev (Minsk) and AA: EPJA 58, 156 (2022) MASSRAD (semi-analytic), updated ELRADGEN Monte Carlo,

(Afanasev et al., Czech. J. Phys. 53 (2003) B449;

Akushevich et al., Comput. Phys. Commun. 183 (2012) 1448) to include

(a) mass effects and (b) two-photon effects (c) hard brem included

+Dedicated MS generators for MAMI (Bernauer), OLYMPUS (Gramolin),

THE GEORGE PRAD, MUSE, WASHINGTON

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

WASHINGTON, DC

UNIVERSITY

Radiative corrected cross section

 $l(k_1) + p(p_1) \to l'(k_2) + p'(p_2) + \gamma(k)$

Three contribution $\sigma \equiv d\sigma/d\Omega$

- $\square \sigma_{Born}$ Born contribution
- σ_R real photon emission
- \circ σ_V additional virtual particle contributions
- σ_R and σ_V are infrared divergent terms. But $\sigma_R + \sigma_V$ are infrared free!

 $\sigma_{tot} = \sigma_{Born} + \sigma_R + \sigma_V = \sigma_{Born} + (\sigma_R - \sigma_{IR}) + (\sigma_V + \sigma_{IR})$

$$\sigma_R = \int dv dt d\phi_k \frac{d\sigma_R}{dv dt d\phi_k}$$

 $v = (p_2 + k)^2 - M^2$ — inelasticity, $t = -(p_2 - p_1)^2$, ϕ_k — angle between (\vec{k}_1, \vec{k}_2) and (\vec{k}_1, \vec{k}) planes

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

WASHINGTON, DC

THE GEORGE WASHINGTON UNIVERSITY

Mo-Tsai and Bardin-Shumeiko methods

 $\frac{d\sigma_R}{d\Omega dE_{\gamma}} = f_0(E_{\gamma}) + \frac{f_1(E_{\gamma})}{E_{\gamma}}, \text{where} \frac{d\sigma_R}{d\Omega} = \int_0^{E_{\gamma}} dE_{\gamma} \frac{d\sigma_R}{d\Omega dE_{\gamma}} = \infty$ Mo-Tsai: $\frac{d\sigma_R}{d\Omega} \rightarrow \frac{d\sigma_R^{soft}(\Delta)}{d\Omega} + \frac{d\sigma_R^{hard}(\Delta)}{\frac{d\Omega}{d\Omega}},$ Direct integration $\frac{d\sigma_R^{hard}(\Delta)}{d\Omega} = \int_{-\infty}^{E_{\gamma}^{max}} dE_{\gamma} \frac{d\sigma_R}{d\Omega dE_{\gamma}}$ Integration with regularization: $\frac{d\sigma_R^{soft}(\Delta)}{d\Omega} = \int_{1}^{\Delta} dE_{\gamma} \frac{f_1(0)}{E}$ Bardin-Shumeiko: $\frac{d\sigma_R}{d\Omega} = \frac{d\sigma_{IR}}{d\Omega} + \frac{d\sigma_R}{d\Omega} - \frac{d\sigma_{IR}}{d\Omega} = \frac{d\sigma_{IR}}{d\Omega} + \frac{d\sigma_F}{d\Omega}$ Infrared part $\frac{d\sigma_{IR}}{d\Omega} = \frac{d\sigma_R^{soft}(\Delta)}{d\Omega} + \frac{d\sigma_{IR}^{hard}(\Delta)}{d\Omega}$, Direct integration $\frac{d\sigma_F}{d\Omega}$ and $\frac{d\sigma_{IR}^{hard}(\Delta)}{d\Omega} = \int_{-\infty}^{E_{\gamma}^{max}} dE_{\gamma} \frac{f_1(0)}{E_{\gamma}}$

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

Radiative corrected cross section

 $l(k_1) + p(p_1, \eta) \to l'(k_2) + p'(p_2) + \gamma(k)$

$$\sigma_{tot}(v_{cut}) = \int_{0}^{v_{cut}} dv \left(\frac{d\sigma_R}{dv} - \frac{d\sigma_{IR}}{dv}\right) + (1 + \delta(v_{cut}))\sigma_{Born}$$

For generation of radiative events $v_{cut} = v_{max}$

 $\sigma_{tot}(v_{cut}) = \sigma_r(v_{cut}, v_{min}) + \sigma_n(v_{min})$

 v_{min} missing mass square resolution. Usually $v_{min} < v_{cut} \ll v_{max}$

$$\sigma_r(v_{min}) = \int_{v_{min}}^{v_{max}} dv \int dt d\phi_k \frac{d\sigma_R}{dv dt d\phi_k}$$

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

ELRADGEN Monte Carlo Input-Output Data

Input:

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

- 4-momentum of the virtual photon $q = k_1 k_2$ generated externally;
- missing mass square resolution v_{min} ; Output:
- 4-momentum of the real photon k;
- 4-momentum of the virtual photon $q = k_1 k_2 k$;
- weight for elastic Born contribution reweighting $w = (\sigma_B + \sigma_{RC})/\sigma_B$.

Radiative corrections for muon scattering

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

Radiative correction for electrons

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

Interference effects between lepton and proton brem

Two assumptions:

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

- Any exited states in the intermediated proton are not considered that allow us to use the standard fermionic propagator for this particle.
- Extending the on-shell proton vertex on off-shell region.

IR divergence cancellation

The infrared divergent term was extracted by Bardin-Shumeiko approach and cancelled with corresponding soft part in two-photon exchange contribution

Soft photon estimation was estimated by A. Afanasev and O. Koshchii in Phys. Rev. D 96, 016005 All calculation has been performed beyond the ultrarelativistic limit keeping lepton mass during the whole process of calculation.

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

"Standard" TPE Corrections Calculated with no Ultra-relativistic Approximation

. Koshchii, AA, Phys. Rev. D 96, 016005 (2017)

$$d\sigma_{1\gamma} = \frac{1}{\epsilon_m (1+\tau)} [\tau G_M^2(Q^2) + \epsilon_m G_E^2(Q^2)] d\sigma_M,$$
One-Photon Exchange modified

$$d\sigma_M = \frac{\alpha^2}{Q^4} \frac{(4\epsilon_1\epsilon_2 - Q^2)\vec{k}_2^2}{|\vec{k}_1|(|\vec{k}_2| + \frac{\epsilon_1}{M}|\vec{k}_2| - \frac{\epsilon_2}{M}|\vec{k}_1|\cos\theta)},$$

$$\epsilon_m^{-1} = \frac{(s-u)^2 + Q^2(4M^2 + Q^2) - 4m^2(4M^2 + Q^2)}{(s-u)^2 - Q^2(4M^2 + Q^2)}$$

$$\begin{split} \delta &= -\frac{\alpha}{\pi} \left(\frac{b_{12}}{\gamma_{12}} \bigg[\frac{1}{2} \ln(\alpha_{12}) \cdot \ln\left(\frac{4\gamma_{12}^2}{m^4 \alpha_{12} (1 - \alpha_{12})^2} \right) + \text{Li}_2 \bigg(\frac{u}{2\gamma_{12} (1 - \alpha_{12})} \bigg) - \text{Li}_2 \bigg(\frac{u\alpha_{12}}{2\gamma_{12} (1 - \alpha_{12})} \bigg) \bigg] \\ &- \frac{b_{11}}{\gamma_{11}} \bigg[\frac{1}{2} \ln(\alpha_{11}) \cdot \ln\left(\frac{4\gamma_{11}^2}{m^4 \alpha_{11} (1 - \alpha_{11})^2} \right) + \text{Li}_2 \bigg(\frac{2m^2 + 2M^2 - s}{2\gamma_{11} (1 - \alpha_{11})} \bigg) - \text{Li}_2 \bigg(\frac{(2m^2 + 2M^2 - s)\alpha_{11}}{2\gamma_{11} (1 - \alpha_{11})} \bigg) \bigg] \\ &+ \frac{2\alpha_{11}b_{11}}{\alpha_{11}^2 m^2 - M^2} \bigg[\ln^2 \bigg(\frac{\nu}{M^2} \bigg) - \ln^2 \bigg(\frac{\nu}{\alpha_{11} m M} \bigg) \bigg] - \frac{2\alpha_{12}b_{12}}{\alpha_{12}^2 m^2 - M^2} \bigg[\ln^2 \bigg(\frac{\nu}{M^2} \bigg) - \ln^2 \bigg(\frac{\nu}{\alpha_{12} m M} \bigg) \bigg] \\ &+ \frac{b_{11}}{2\gamma_{11}} \big[S_{11}^{(2)} + S_{22}^{(2)} \big] - \frac{b_{12}}{2\gamma_{12}} \big[S_{12}^{(2)} + S_{21}^{(2)} \big] \bigg). \end{split}$$

Lepton charge asymmetry due to (soft) TPE (Heavy-lepton analogue of Tsai'61 or Maximon-Tjon'00)

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Predicting Charge Asymmetries for MUSE

- . MUSE will compare e^+/e^- and μ^+/μ^- cross sections
- Koshchii, AA, Phys. Rev. D 96, 016005 (2017)Predicted asymmetries are <1%

THE GEOF

WASHINGTON, DC

Helicity-Flip in TPE; estimate of inelastic contribution

- New dynamics from scalars (σ , f-mesons). No pseudo-scalar (π^0 , η) contribution for unpolarized particles, cf Naik, AA (arXiv:2401.13892)
- Scalar t-channel exchange contributes to TPE (no longer setting m_{lepton} to zero!)

- No information on $F_{\sigma\mu\mu}$ coupling is available. Need model estimates.
- . Theory analysis by AA, Koshchii, Phys.Rev. D 94, 116007 (2016).

Can be studied directly in the ratio of μ + and μ - cross sections

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

THE GEORGE WASHINGTON UNIVERSITY

Rad Corrections for MUSE vs AMBER

Eur. Phys. J. A (2022) 58:156 https://doi.org/10.1140/epja/s10050-022-00805-8 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Theoretical Physics

Charge-asymmetric correlations in elastic lepton- and antilepton-proton scattering from real photon emission

Fig. 4 Relative RC vs the value of the scattering lepton kinetic energy for elastic $e^{\pm}p$ and $\mu^{\pm}p$ scattering, beam momenta is equal to 115 MeV, 153 MeV and 210 MeV for $\theta = 20^{\circ}$ (1), 60° (2), 100° (3). Blue (red)

lines correspond to lepton (antilepton) scattering while solid (dashed) lines correspond to fixed $Q^2\,(\cos\theta)$

WASHINGTON, DC

WASHINGTON

AMBER Kinematics

 $\delta(\%)$

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

Beam Single Spin Asymmetry: A source of systematics?

- . Muons produced in pion decay are spin-polarized due to weak interactions
 - . Polarizations are opposite for positive vs negative muons
 - A single-spin scattering asymmetry arises from two-photon exchange and may be a source of systematic effect in MUSE
- . This effects was evaluated for MUSE kinematics by Koshchii and AA, Phys. Rev. **D** 100, 096020 (2019)

$$\begin{split} d\sigma_T(\phi) &= d\sigma_U + \frac{\vec{S} \cdot \left(\vec{k}_1 \times \vec{k}_2\right)}{\left|\vec{k}_1 \times \vec{k}_2\right|} d\sigma_y \\ &= d\sigma_U + d\sigma_y \sin\phi, \end{split}$$

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

Beam SSA: results

Koshchii, AA, Phys. Rev. D 100, 096020 (2019) Asymmetry doubles for μ +/ μ - ratio

- Largest asymmetries for MUSE are for the muons, ~0.2%, azimuthal dependence $\sim \sin(\mathbf{\phi})$, therefore will cancel for azimuthally symmetric detectors. Possible source of systematics to account for.
- Additional suppression at higher energies

THE GEORGE No issue for AMBER within ppm

Andrei Afanasev, PAW'24 International Workshop, 18-20 March 2024, CERN, Switzerland

WASHINGTON, DC

WASHINGTON

Rad Corrections for different kinematic settings

- . Leptonic variables, $p(l,l')\gamma p$: detection of the scattered lepton, leaving options for integration over brem photon phase space:
 - Fix the scattering angle for Q^2 of interest in the elastic limit p(l,l')p, then integrate over the final-lepton energy
 - . Fix Q^2 , then integrate over scattering angles

THE GEORGE WASHINGTON UNIVERSITY

- . Both options provided by MASSRAD code
- Hadronic variables, $p(l,p')\gamma l$: detection of recoil proton
 - Rad correction involves integration up to 100% energy loss by the final lepton a highly singular behavior for electrons, less singular for muons, see AA, Akushevich, Ilyichev, Merenkov, PLB514, 269 (2001)

Conclusions

- . Radiative corrections show significant difference between electron and muon scattering, must be properly accounted for
- Radiative corrections calculated to be about 1-1.5% for muons and varies from -4% to +3% for electrons (MUSE and AMBER)
 - Uncertainties mainly from acceptances, need to include in detector simulations (Strauch et al) Theory uncertainties for MUSE experiment evaluated at <0.1% (muons), <0.5% (electrons)
- Beam SSA is evaluated as a possible source of systematics, <0.2%, events have to be integrated symmetrically over azimuthal angles to cancel SSA
- Two-photon exchange <1% (electrons), <0.5% (muons)
 <0.1% (inelastic excitations)
- Two-photon effects can be studied directly in the ratio of μ + and μ -, e⁺ and e⁻ cross sections; TPE cancel in the sum of particle+antiparticle cross sections

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Acknowledgements

- . Igor Akushevich, Alexander Ilyichev
- . Atharva Naik, GW grad student.
- Work supported by National Science Foundation Award PHY-2111063

