Cross sections for cosmic rays

Fiorenza Donato

Torino University & INFN

Bossey Castle, Geneva - 18.03.2024 "PAW'24 - Physics at Amber Int. Workshop"

CRs in the Galaxy

Primaries: produced in the sources (SNR and Pulsars) H, He, CNO, Fe; e-, e+; possibly e+, p-, d- from Dark Matter annihilation

Secondaries: produced by spallation of primary CRs (p, He,C, O, Fe) on the interstellar medium (ISM): Li, Be, B, sub-Fe, [...], (radioactive) isotopes ; e+, p-, d-

Propagation equation

$$\frac{\partial \psi}{\partial t} - \nabla \cdot \{ \frac{D(E)}{\nabla \psi} \} + \frac{\partial}{\partial E} \left\{ \frac{dE}{dt} \psi \right\} = Q(E, \mathbf{x}, t)$$

en. Losses source spectrum

Diffusion: D(x,R) a priori usually assumed isotropic in the Galaxy: D ~DoR^δ Do and δ usually fixed by B/C

Energy losses: Nuclei: ionisation, Coulomb Leptons: Synchrotron on the galactic B~3.6 µG Inverse Compton on photon fields (stellar, CMB, UV, IR)

Sources: Supernova Remnants, $Q(E) \propto E^{-\gamma}$ Nuclear fragmentation, $Q_j(E) \propto n_{ISM} \sigma_{ij} \psi_i$ Dark Matter annihilation, see below

diffusion

Interactions and decays in the Galaxy

Courtesy of M. Korsmeier

The spectrum of secondary fluxes

see talk by A. Kounine

The rigidity dependence of Li, Be and B are nearly identical, but different from the primary He, C and O (and also p).

Li, Be, B fluxes measured by Pamela and AMS show an identical hardening w.r.t. energy above 200 GV. The spectral index of secondaries hardens 0.13 +- 0.03 more than for primaries

Propagation models vs data

Weinrich+ A&A 2020

Data on secondary/primary species are well described by propagation model with diffusione coefficient power index $\delta = 0.50 \pm 0.03$.

Convection + reaccelerating, or pure diffusion both work.

Propagation models vs data

Several propagation models are tested

Di Mauro, Korsmeier, Cuoco 2311.17150

Fragmentation cross section uncertainties currently prevent a better understanding of CR propagation

Korsmeier & Cuoco, PRD 2021

Cross sections for Galactic cosmic rays

Data driven parameterizations (silberberg#Tsao), semi-empirical formulae (webber+), parametric formulae/direct fit to the data (Galprop), MonteCarlo codes (Fluka, Geant; ...)

Genolini, Moskalenko, Maurin, Unger PRC 2018

Differences in the XS parameterizations

Genolini, Putze, Salati, Serpico A&A 2015

Differences in one parameterization wrt a benchmark model

Even with the same, although scarce data, interpretation may be different

Fragmentation cross sections

They matter in both directions: as a loss term for progenitors, as a source term for daughters

De La Torre Luque+ JCAP 2021

Weinrich+ A&A 2021

Probably the most limiting aspect now Dedicated campaigns are needed (LHC, NA61, Amber, ...)

Most relevant physics cases Improve Boron production cross sections

Genolini, Moskalenko, Maurin, Unger PRC 2018

The evolution of error on the calculated B flux as if new reactions were measured with perfect accuracy (12C+H is the most critical one)

Most relevant physics cases

Improve Lithium and Berillium production cross sections

Genolini, Moskalenko, Maurin, Unger PRC 2018

²⁴Mg+He ⁵⁶Fe+He ¹¹B+He ²⁷Al+H ²³Na+H ²⁵Mg+H

5

¹²C+H ¹⁶O+H

Current

²⁸Si+H

¹⁶0+He

¹²C+He

 14 N+H 20 Ne+H 10 B+H 15 N+H 13 C+H 56 Fe+H 28 Si+He

²⁴Mg+H

Evoli, Morlino, Blasi, Aloisio PRD 2020 Di Mauro, Korsmeier, Cuoco 2311.17150

Beriullium case very relevant

H and He isotopes

Coste+ A&A 2012

Gomez-Coral+ PRD 2024

Modelization of cross sections relies on poor data Antimatter

in the Galaxy

Antiproton production by inelastic scatterings

Korsmeier, FD, Di Mauro PRD 2018

$$q_{ij}(T_{\bar{p}}) = \int_{T_{\rm th}}^{\infty} dT_i \ 4\pi \, n_{\rm ISM,j} \, \phi_i(T_i) \, \frac{d\sigma_{ij}}{dT_{\bar{p}}}(T_i, T_{\bar{p}}).$$

 $\frac{d\sigma_{ij}}{dT_{\bar{p}}}(T,T_{\bar{p}}) = p_{\bar{p}} \int d\Omega \ \sigma_{\rm inv}^{(ij)}(T_i,T_{\bar{p}},\theta).$

Data from space are very precise

We need cross sections at <3%

See talk by

M. Di Mauro

Fil of Galactic pulsar populations to AMS-02 et data

Orusa, Di Mauro, FD, Manconi JCAP 2021

The contribution of pulsars to e+ is dominant above 100 GeV and may have different features. E>1 TeV: unconstrained by data. Secondaries forbid evidence of sharp cut-off. <u>No need for Dark Matter, indeed</u>

et production channels

$$q_{ij}(T_{e^+}) = 4\pi \, n_{\text{ISM},j} \int dT_i \, \phi_i(T_i) \frac{d\sigma_{ij}}{dT_{e^+}}(T_i, T_{e^+})$$

L. Orusa, M. Di Mauro, FD, M. Korsmeier PRD 2022

We include all these contributions.

Similarly for collisions with nuclei.

We repeat ALL the analysis for eunder charge conjugation

The et production chain from Tt production

$$\frac{d\sigma_{ij}}{dT_{e^+}}(T_i, T_{e^+}) = \int dT_{\pi^+} \, \frac{d\sigma_{ij}}{dT_{\pi^+}}(T_i, T_{\pi^+}) \, P(T_{\pi^+}, T_{e^+})$$

Integral over the pion production cross section convolved with the probability density function P

$$\frac{d\sigma_{ij}}{dT_{\pi^+}}(T_i, T_{\pi^+}) = p_{\pi^+} \int d\Omega \ \sigma_{\rm inv}^{(ij)}(T_i, T_{\pi^+}, \theta)$$

The pion production cross section is the integral of the lorentz Invariant cross section over scattering angle (or p_T)

$$\sigma_{\rm inv}^{(ij)} = E_{\pi^+} \frac{d^3 \sigma_{ij}}{d p_{\pi^+}^3}$$

<- data

A fit is performed on the Jin data

L. Orusa, M. Di Mauro, FD, M. Korsmeier PRD 2022

Experiment	$\sqrt{s} \; [{ m GeV}]$	$\sigma_{ m inv}$	n	Ref.
NA49	17.3	\times	\times	[22]
ALICE	900	\times	-	[23]
CMS	900, 2760, 7000, 13000	\times	-	[24, 25]
Antinucci	π^+ (3.0, 3.5, 4.9, 5.0, 6.1, 6.8)	-	\times	[26]
	$\pi^{-}(3.0, 3.5, 4.9, 5.0, 6.1, 6.8)$	-	\times	[26]
	K^+ (2.8, 3.0, 3.2, 5.0, 6.1, 6.8)	-	\times	[26]
	K^{-} (4.9, 5.0, 6.1, 6.8)	-	\times	[26]
NA61	6.3, 7.7, 8.8, 12.3, 17.3	-	\times	[21]

We use data on oinv, the multiplicity n or both.

Results on the Jin for 17+ production

L. Orusa, M. Di Mauro, FD, M. Korsmeier PRD 2022

Data are fitted with very small uncertainties Our parameterizations result appropriate, data are very precise

Total cross section from pp-> e+ + X

L. Orusa, M. Di Mauro, FD, M. Korsmeier PRD 2022

All channels contributing >0.5% are included. Uncertainty globally contained to <10%

Effect of scattering off nuclei

L. Orusa, M. Di Mauro, FD, M. Korsmeier PRD 2022 We need a model for the scattering involving He. No data are there. We rely on NA49 p+C->e++X data

Uncertainty is small, but very likely is not the true one Data on He are necessary

Final results on et cross section

L. Orusa, M. Di Mauro, FD, M. Korsmeier PRD 2022

He-He CNO AAfrag p-p CNO AAfrag s⁻¹] $q^{e^{+}} T^{2.7}_{e^{+}}$ [GeV^{1.7} m⁻³ s⁻¹] 10^{-20} He-p He-p p-He Kamae Total p-He Kamae Total 10⁻²⁰ $T_{e}^{2.7}$ [GeV^{1.7} m⁻³ 10-21 .0⁻²¹ q^{e_} 10⁻²² 10-22 0.2 0.2 Rel. unc. Rel. unc. 0.1 0.1 0.0 0.0 -0.1-0.1-0.2↓ 10⁻² -0.2¹ 10⁻² 10^{-1} 100 10¹ 10² 10^{-1} 10⁰ 10¹ 10² 10³ 10^{3} T_{e^+} [GeV] $T_{e^{-}}$ [GeV]

Production cross section is now known why 7-8% uncertainty above 1 GeV. Below we extrapolate. Comparison with MonteCarlo computations is done for p-p. Similar results for e-.

Positrons

Electrons

The role of e[±] secondaries

Di Mauro, FD, Korsmeier, manconi, Orusa, PRD 2023

e+ secondaries contribute significantly to shape the spectrum at Earth below few GeV Cross section uncertainties at the same level or greater than propagation ones (L= 4 kpc)

Ankideukerons persepckives

Serksnyte et al, PRD 2022

Low energy window is a discovery field Uncertainty in cross sections (left) Uncertainties on Pc is ± 70%, Pc^3 in the flux (right)

Conclusions

Great efforts to better understand nuclei and antinuclei in CRS: theory models, data from space, data from colliders.

Data from space are actually hampered by lack of precise (<10%) ross section: nuclei, isotopes, antimatter, ys

Data from colliders are highly desirable. A specific receipt can be provided by the astroparticle community

> A dedicated workshop at CERN 16-18/10/2024 https://indico.cern.ch/event/1377509/

Wishes' List

Partial, and personal

- 1. Low energy (0.1 < Tpbar<10 GeV) antiprotons from p-p
- 2. Antideuteron fusion at low energies (p beam ~ 10-102 GeV)
- 3. p+He-> e++X (p+He-> 11++X)
- 4. 12C+p -> LiBeB fragments with isotopes
- + many more!

Analytical formulae for et production XS

L. Orusa, M. Di Mauro, FD, M. Korsmeier PRD 2022

The procedure is fully data driven

$$\sigma_{\rm inv} = \sigma_0(s) c_1 \left[F_p(s, p_T, x_R) + F_r(p_T, x_R) \right] A(s)$$

$$F_p(s, p_T, x_R) = (1 - x_R)^{c_2} \exp(-c_3 x_R) p_T^{c_4}
onumber \ imes \exp\left[-c_5 \sqrt{s/s_0} \, {}^{c_6} \left(\sqrt{p_T^2 + m_\pi^2} - m_\pi
ight)^{c_7 \sqrt{s/s_0} \, {}^{c_6}}
ight]$$

$$egin{aligned} F_r(p_T, x_R) &= (1-x_R)^{c_8} \ & imes \exp\left[-c_9\,p_T - \left(rac{|p_T-c_{10}|}{c_{11}}
ight)^{c_{12}}
ight] \ & imes \left[c_{13}\exp(-c_{14}\,p_T^{c_{15}}x_R) +
ight. \ & imes + c_{16}\exp\left(-\left(rac{|x_R-c_{17}|}{c_{18}}
ight)^{c_{19}}
ight) \end{aligned}$$

$$A(s) = \frac{1 + \left(\sqrt{s/c_{20}}\right)^{c_{21}-c_{22}}}{1 + \left(\sqrt{s_0/c_{20}}\right)^{c_{21}-c_{22}}} \left(\sqrt{\frac{s}{s_0}}\right)^{c_{22}}$$

Fs and Fr mainly driven by NA49 data High energy behavior A(s) tested on CMS and ALICE data

Fluka MC generator

N. Mazziotta+, AP 2017

Points are from Dermer 1986

Te is severely degraded from Projectile energy

Propagated et and e- w.r.t. data

Comparison with Monte Carlo generators

Koldobskiy et al., PRD 2021, 2110.00496

Results with Aafrag

FIG. 9: Electron and positron fluxes for a power-law cosmic ray spectrum $(\propto 1/p^2 \exp(-p/p_0))$.

Different MC modelings lead to considerable differences in the Production cross section, and consequently on the source spectrum

Results at large sqrt(s)

L. Orusa, M. Di Mauro, FD, M. Korsmeier PRD 2022

We use oinv or multiplicity

Uncertainties between 5% and 10% - most relevant is 5% at low pt

Antimatter or y-rays sources from DARK MATTER

Annihilation

$$\mathcal{Q}_{\mathrm{ann}}(ec{x},E) = \ \epsilon \left(rac{
ho(ec{x})}{m_{DM}}
ight)^2 \sum_f \langle \sigma v
angle_f rac{dN_{e^\pm}^f}{dE}$$

Decay

$$\mathcal{Q}_{
m dec}(ec{x},E) = \left(rac{
ho(ec{x})}{m_{DM}}
ight) \sum_f \Gamma_f rac{dN_{e^{\pm}}^f}{dE}$$

- p DM density in the halo of the MW
- m_{DM} DM mass
- <0v> thermally averaged annihilation cross section in SM channel f
- r DM decay time
- e+, e- energy spectrum generated in a single annihilation or decay event

Annihilations take place in the whole diffusive halo