NA64 future initiatives

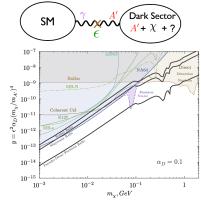
Andrea Celentano

INFN-Genova

- Introduction
- 2 The NA64-e experiment at CERN
- The POKER project
- MA64 future initiatives
- Conclusions

Light dark matter

The light dark matter hypothesis predicts that DM is made by sub-GeV particles interacting with SM via a new force.¹

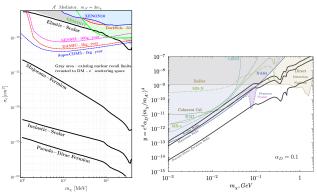

Simplest possibility: "vector-portal". DM-SM interaction trough a new U(1) gauge-boson ("dark-photon") coupling to electric charge

Model parameters:

- Dark-photon mass $M_{\Delta'}$ and coupling to electric charge ε
- Dark matter mass M_{γ} and coupling to dark photon g_D ($\alpha_D \equiv g_D^2/4\pi$)

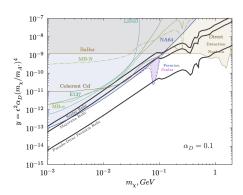
Annihilation cross section reads:

$$\langle \sigma v \rangle \propto \frac{\varepsilon^2 \alpha_D m_\chi^2}{m_{A'}^4} = \frac{\varepsilon^2 \alpha_D m_\chi^4}{m_{A'}^4} \frac{1}{m_\chi^2} \equiv \frac{y}{m_\chi^2}$$



For a fixed m_{γ} value, the thermal origin hypothesis (DM relic density) imposes a unique value of y

¹For a comprehensive review: 1707.04591, 2005.01515, 2011.02157


Introduction

- Dark Matter direct detection experiments, typically optimized for $M_\chi \ge 1$ GeV, have a limited sensitivity in the sub-GeV range
 - $E_R \propto v^2 M_V^2 / M_N$, $v \simeq 220 \text{ km/s} \sim 7 \cdot 10^{-4} \text{c}$
 - Many ongoing efforts to overcome this kinematic effect
- LDM-SM interaction cross section at low energy has a sizable dependence on the impinging particle velocity, with a drastic reduction for specific models

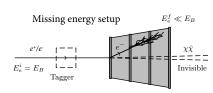
Introduction

- Dark Matter direct detection experiments, typically optimized for $M_\chi \geq 1$ GeV, have a limited sensitivity in the sub-GeV range
 - $E_R \propto v^2 M_\chi^2 / M_N$, $v \simeq 220 \text{ km/s} \sim 7 \cdot 10^{-4} \text{c}$
 - Many ongoing efforts to overcome this kinematic effect
- LDM-SM interaction cross section at low energy has a sizable dependence on the impinging particle velocity, with a drastic reduction for specific models

LDM at accelerators

Accelerator-based experiments at the intensity frontier are uniquely suited to explore the light dark matter hypothesis

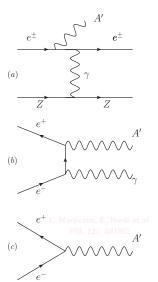
The NA64-e approach to Dark Sector search


NA64-e approach: missing energy measurement, high energy e^-/e^+ beam impinging on an active thick target.

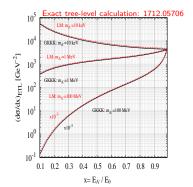
Number of signal events scales as: $N_{\rm S} \propto \varepsilon^2$

Missing Energy Experiment

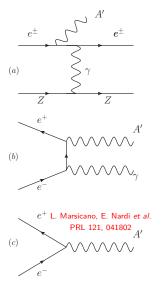
Introduction


- Specific beam structure: impinging particles impinging "one at time" on the active target
- Deposited energy E_{dep} measured event-by-event
- Signal: events with large $E_{miss} = E_B - E_{dep}$
- Backgrounds: events with ν / long-lived (K_L) / highly penetrating (μ) escaping the detector / eventual beam contaminants

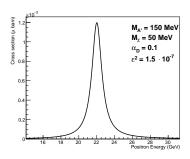
Target/ECAL/HCAL


LDM production mechanisms with lepton beams

Three main LDM production mechanisms in fixed-target, lepton-beam experiments


a) A'-strahlung

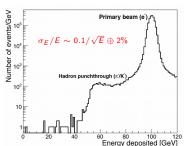
- Radiative A' emission (nucleus EM field) followed by $A' \to \chi \overline{\chi}$
- Scales as $Z^2 \alpha_{EM}^3$
- Forward-boosted, high-energy A' emission

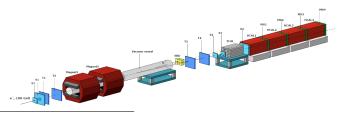

LDM production mechanisms with lepton beams

Three main LDM production mechanisms in fixed-target, lepton-beam experiments

c) Resonant e^+e^- annihilation

- $e^+e^- \rightarrow A' \rightarrow \chi \overline{\chi}$
- Scales as $Z\alpha_{FM}$
- Closed kinematics: $P_{\chi} + P_{\overline{\chi}} = P_{e^+} + P_{e^-}$
- Resonant, Breit-Wigner like cross section with $M_{\Delta'} = \sqrt{2m_e E_{e^+}}$



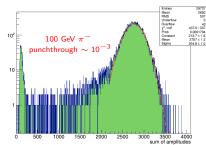

The NA64-e experiment at CERN North Area

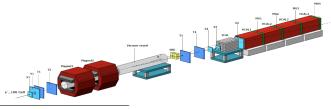
NA64-e: missing energy experiment at CERN North Area, 100 GeV e^- beam² H4 line: $\simeq 10^7$ e^- /spill (γ conversion). $\sigma_E < 1\%$, hadron contamination $\sim 0.5\%$

Experiment Setup

- EM-Calorimeter: 40X₀, Pb/Sc Shashlik
- Hadron calorimeter: 4 m, 30 λ
- Beam identification system: SRD MM trackers
- Plastic scintillator based scintillator counters for VETO

The NA64-e experiment at CERN North Area

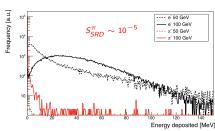

NA64-e: missing energy experiment at CERN North Area, 100 GeV e^- beam² H4 line: $\simeq 10^7$ e^- /spill (γ conversion). $\sigma_E < 1\%$, hadron contamination $\sim 0.5\%$

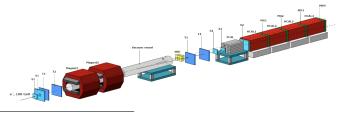

Experiment Setup

- EM-Calorimeter: 40X₀, Pb/Sc Shashlik
- Hadron calorimeter: 4 m, 30 λ_I

MM trackers

Plastic scintillator based scintillator


²Phys. Rev. Lett. 131, 161801 (2023)

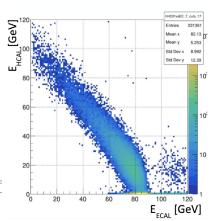

The NA64-e experiment at CERN North Area

NA64-e: missing energy experiment at CERN North Area, 100 GeV e^- beam² H4 line: $\simeq 10^7$ e^- /spill (γ conversion). $\sigma_E < 1\%$, hadron contamination $\sim 0.5\%$

Experiment Setup

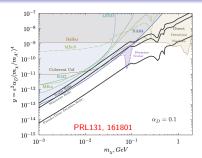
- EM-Calorimeter: 40X₀, Pb/Sc Shashlik
- Hadron calorimeter: 4 m, 30 λ_I
- Beam identification system: SRD + MM trackers
- Plastic scintillator based scintillator counters for VFTO

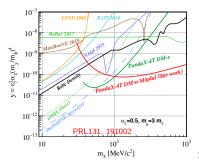
²Phys. Rev. Lett. 131, 161801 (2023)


Introduction

Possible background sources: production of long-lived and highly penetrating neutral SM particles upstream / within ECAL (neutrons, kaons)

- (i) Di-muon events: $eZ \rightarrow eZ\mu^+\mu^-$, with one or both muons decaying or escaping without being detected by VETO/HCAL.
- (ii) Decay of mis-identified contaminating hadrons to $e\nu_e$ final state.
- (iii) Electro- / photo-nuclear interactions with upstream beamline materials. Critical contribution, yield estimated directly from data by side-band extrapolation.
- (iv) Hadron productions in the ECAL undetected by VETO/HCAL.


Background yield for 2021-2022 runs


Background source	Background, n_b
(i) dimuons losses or decays in the target	0.04 ± 0.01
(ii) $\mu, \pi, K \to e + \dots$ decays in the beam line	0.3 ± 0.05
(iii) lost γ , n , K^0 from upstream interactions	0.16 ± 0.12
(iv) Punch-through leading n, K_L^0	< 0.01
Total n_b (conservatively)	0.51 ± 0.13

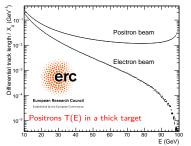
NA64-e: latest results

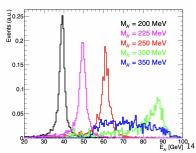
- Accumulated statistics $\simeq 10^{12}$ EOT (2016-2022)
- After applying all selection cuts, no events are observed in the signal region E_{ECAL} < 50 GeV, E_{HCAL} < 1 GeV
- Expected number of background events ~ 0.5 compatible with null observation
- Today, the most competitive exclusion limits in large portion of the LDM parameters space.
 - Accumulate further statistics up to 10^{13} EOT to probe the Pseudo-Dirac Fermion Relic case for $m_{A'} \lesssim 100$ MeV.
 - New ideas are being explored to cover the large-mass region.
 - Complementarity with Direct Detection experiments - e.g. PandaX-4T (scalar LDM).

POKER: POsitron resonant annihilation into darK mattER

An optimized light dark matter search with positrons in the NA64 framework

Why positrons?


Introduction


Signal production reaction: $e^+e^- \rightarrow A' \rightarrow \chi \overline{\chi}$

- Large event yield: $N_s^{annihil} \propto Z\alpha_{EM}$ vs $N_s^{brem} \propto Z^2\alpha_{EM}^3$
- Missing energy distribution shows a peak around $E_R = \frac{M_{A'}^2}{2m}$

Project goal

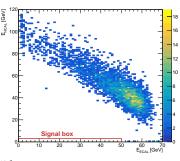
- Perform a preliminary missing energy measurement with a positron beam, using a new high resolution / high segmentation detector replacing the current NA64 FCAL
- Demonstrate the technique and set the basis of the first optimized light dark matter search at a positron-beam facility

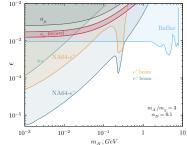
POKER (NA64- e^+): current status

A first proof-of-concept measurement was completed in 2022 (10¹⁰ E⁺OT at 100 GeV)

Goals: backgrounds study (higher beam hadronic contamination), resonant production characterization via the $e^+e^- \rightarrow \mu^+\mu^-$ reaction, extraction of the first upper limit with an analysis optimized for resonant LDM production.

Experimental setup: as in NA64- e^- .

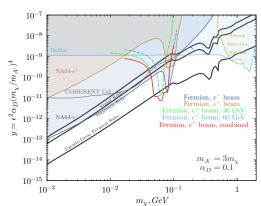

Analysis strategy: blind-analysis (signal-like region $E_{ECAL} < 50$ GeV, $E_{HCAL} < 3$ GeV).


Main backgrounds:

Introduction

- $\pi^+ \rightarrow e^+ \nu_e + \text{fake-SRD tag}$
- Upstream hadrons electro-production, soft e⁺ in ECAL
- Overall expected background yield: < 0.1 events.

Results: no events observed in the signal region after unblinding, new upper limits set to the LDM parameters space.



POKER (NA64- e^+): future plans

Multi-measurement program at NA64 at different e^+ beam energies.

- Two measurements at 60 GeV and 40 GeV will allow to probe the LDM parameters space down to the thermal targets.
- 10¹¹ E⁺OT requested, 2x 1-week data-taking runs.
- Modest detector upgrades: new SRD detector (possibly: new active target)
- Very positive feedback from the SPSC

At low beam energy, the SR emission drops significantly $E_{SR} \propto E_{beam}^4$: an optimized SRD detector is necessary.

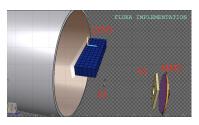
Possible option: LYSO-based homogeneus detector.

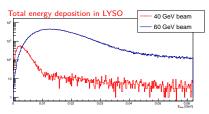
LYSO key properties:

Introduction

• Large density: $\simeq 7 \text{ g/cm}^3$

• High light yield: $\simeq 3 \cdot 10^4 \gamma/\text{MeV}$


• Very fast response: $au \simeq$ 40 ns


Possible critical items for false-positives:

- Lu intrinsic radioactivity
- Afterglow effects

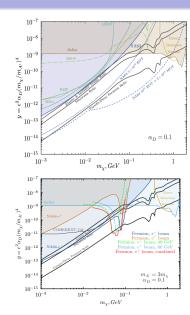
Detector design currently being optimized through MC simulations.

Preliminary results demonstrate that e^+ detection efficiencies up to 99% (60 GeV) / 89% (40 GeV) can be reached, with minimal rate of false-positives.

Electron Beam:

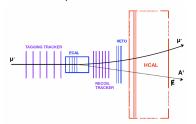
- NA64-e: $\simeq 10^{12}$ EOT already measured
- Additional \sim 6 imes 10 11 EOT collected in 2023 (data analysis ongoing), after detector upgrade (electronics, straw detectors and veto hadron calorimeter)
- Already probed significant part of the A' invisible parameter space up to the thermal relic targets

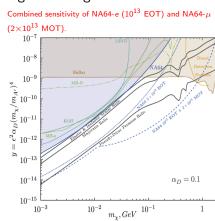
Positron Beam:


- Primary e+ beam allows to exploit the enhanced resonant annihilation cross section \rightarrow high sensitivity to large A' masses
- Dedicated short e^+ run in 2022: 10^{10} e^+ OT accumulated at 100 GeV
- Multi-measurement program at lower energies: dedicated R&D in 2024-2025, long data taking post-LS3.

Muon Beam:

- NA64-μ: missing momentum and energy experiment with a muon beam
- Ongoing parallel effort of the NA64 collaboration, data-taking at M2 beamline


Hadron Beam

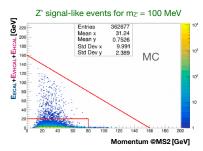

- Explore light mesons fully invisible decay modes
- First ideas are currently being developed

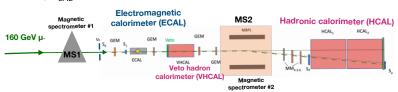
LDM search with a **muon beam** impinging on a fixed target, complementary to e^{\pm} searches in the high-mass region.

- Signal production: A' radiative emission by beam muons impinging on an active target (ECAL).
- Signal signature: missing momentum.
 Well-identified impinging beam track and final-state low-energy deflected track. No additional activity in downstream detectors (VETO / hadronic calorimeters).

NA64 short-term future: NA64 $-\mu$. Experimental setup

NA64- μ experiment: muon beam missing energy + momentum search

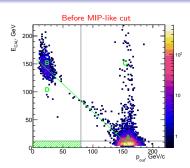

Beam: M2 beamline at CERN SPS, 160 GeV μ^- , $10^5 - 10^7 \mu/s$.


Detector:

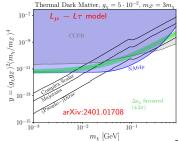
Introduction

- Two magnetic spectrometers, MS1 (impinging μ) / MS2 (scattered μ)
- Three calorimeters: ECAL (active target), VHCAL, HCAL
- Beam-defining plastic scintillator counters

Signal signature: $P_1 \simeq 160$ GeV. $P_2 < 80$ GeV, $E_{CAI} \simeq MIP$.



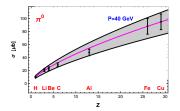
Three test runs have already been performed in 2021 (5x10⁹ MOT), 2022 (2x10¹⁰ MOT), and 2023 (10¹¹ MOT)


- Very successful runs, efficient use of the M2 beam thanks to the positive coordination with the Compass / AMBER experiment.
- Results from 2022 data analysis: $\simeq 3 \times 10^{-12}$ background events expected per MOT. No events observed in the signal region:
 - Well identified 160 GeV/c impinging
 - Reconstructed scattered muon track with p < 80 GeV/c
 - MIP-like energy deposition in the all calorimeters
- 2023 data analysis in progress.

Possibility for a long physics run in 2024

- Detector optimization in progress.
- Final goal: 5×10^{12} MOT.

NA64 future initiatives



NA64-h

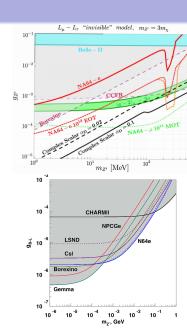
Search for fully-invisible decay of neutral pseudo-scalar mesons as a probe for new physics: dark sector with predominant coupling to quarks. SM prediction: $BR \simeq (M_{\nu}/M_S)^2 \lesssim 10^{-16}$.

- NA64 approach: use a $\simeq 50$ GeV/c π^- beam. Exploit the charge-exchange process $\pi^- N \to SN'$ as a source of secondary high energy $\pi^0/\eta/\eta'$ particles.
- Missing-energy measurement: $E_{WCAL} \simeq E_{MIP}, \; E_{HCAL} \simeq 0, \; E_{VETO} \simeq 0.$
- First test in 2023 with $\simeq 2.9 \times 10^{10}~\pi^- {\rm OT}$ (50 GeV/c) analysis still in progress. Main systematic uncertainty from the total charge-exchange cross section, \simeq 30%. We're currently defining a strategy to measure this.

Conclusions

- Light dark matter scenario (MeV-to-GeV range) is largely unexplored
 - · Can efficiently explain DM relic density.
 - Theoretically founded as the WIMP DM paradigm, assuming a new DM-SM interaction mechanics exists.
- The NA64 experiment at CERN aims to investigate the Dark Sector through missing-energy/momentum measurements, exploiting different probes:
 - Electron beam: 1.6×10^{12} EOT already accumulated, most stringent limits in the low-mass LDM region. Complementarity with Direct Detection.
 - Positron beam: exploit resonant LDM production (high signal yield, clear kinematic signature) - POKER project.
 - Muon beam: focus on the high mass region. Three test runs completed, first results are very promising.
 - Hadron beam: first ideas being developed.

Backup slides


NA64-e at CERN - further recent results

Light Z' search in the $L_{\mu}-L_{\tau}$ scenario

- Re-analysis of the 2016-2018 dataset searching for a new gauge boson coupling predominantly to muons and taus
- Ad-hoc calculation of the loop-induced coupling to photons (kinetic mixing)
- Results are more stringent than Belle-II limits, and compatible with exclusion contours from the re-analysis of neutrino experiments

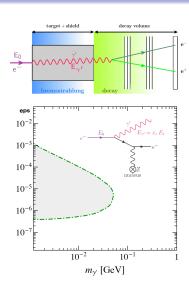
Search for a new B-L Z' gauge boson

- First NA64 analysis using the 2021 dataset
- New constraints on the Z' parameters space, more stringent compared to those obtained from the neutrino-electron scattering data for the 0.3-100 MeV mass range
- Results can be re-casted to A' space via $g_{B-L} \leftrightarrow \varepsilon e$.

A' production and visible decay detection in a fixed thick-target setup

Reaction topology:

- A' production: radiative A' emission $e^- N \rightarrow e^- N A'$
- A' propagation: for low ε values (≤ 10⁻⁵)
 the A' is long-lived, resulting to a detached
 decay vertex.
- A' detection: measurement of the e⁺ e⁻ decay pair in a downstream detector.

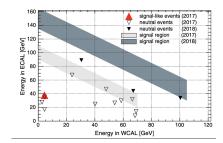

Number of events:

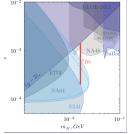
Dependence on main parameters³:

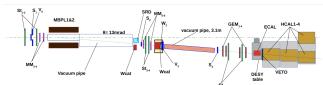
$$N \sim N_{eot} n_{sh} \int dE' dE_e dt I_e(E_e, t) rac{d\sigma}{dE'} e^{-L_{sh}/\lambda} (1 - e^{-L_d/\lambda})$$

- Upper bound: $N_{evt} \propto \varepsilon^2 e^{-L_{sh}/I_{A'}}$, $I_{A'} \propto E_0/\varepsilon^2$
- Lower bound: $N_{evt} \propto \varepsilon^2 L_d/I_{A'} \propto \varepsilon^4$

³For a review: S. Andreas, Phys.Rev. D86 (2012) 095019

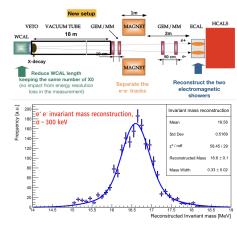



Visible A' search at NA64


A' production by radiative emission in compact WCAL active target and decay to e^+e^- in vacuum pipe

- Clean impinging e^- with $P \simeq P_0$
- No activity in W2 and V2 veto counters
- MIP-like signature in S4, signals in trackers
- No activity in VETO and HCAL
- Energy deposition in WCAL and ECAL, with $E_{WCAL} + E_{ECAL} = E_0$

Combined analysis of 2017 ($5.4 \cdot 10^{10}$ EOT, 100 GeV/c) and 2018 ($3 \cdot 10^{10}$ EOT, 150 GeV/c) data: no signal-like events observed in the signal region



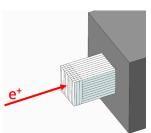
Future prospects for post-2023 run: improved setup with e^+e^- invariant mass reconstruction.

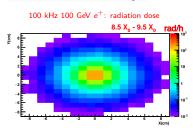
Detector upgrades:

- New compact tungsten calorimeter (same X₀) to measure short-lived A' and improve sensitivity to large ε
- New SRD optimized for 150 GeV beam energy
- New larger transverse size MM
- New ECAL with larger transverse dimensions

With these modifications, 20 days of beam time at 150 GeV/c will be required to fully scrutinize the still-unexplored X17 parameters space.

POKER (NA64- e^+): new active target


To properly measure the A' signal resonant line shape, a new active target with optimized energy resolution is required: **new PKR-CAL detector**.

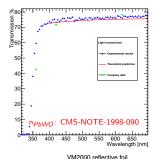

Baseline design: 33.5 X_0 PbWO₄ calorimeter with SiPM readout

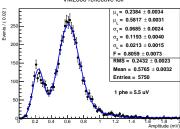
- 9x9 matrix of 20x20x220 mm 3 crystals + 4 layers in front (pre-shower): 31.5 X_0
 - Fully absorb EM shower with minimal longitudinal/transverse energy leakage
- Required $\sigma_E/E \sim 2.5\%/\sqrt{E} \oplus 0.5\%$
 - LY ~ 2.5 phe/MeV
 - Use four 6x6 mm 2 SiPMs, 10 μm cell coupled to each crystal

Radiation levels are critical

- EM dose up to 200 rad/h (CMS ECAL max: 500 rad/h)
 - Light-induced annealing
 - Beam-spot rastering: factor ≃5 reduction
- $\phi_{\it n} \leq 10^3~{\rm n}_{\it eq}~{\rm cm}^{-2}{\rm s}^{-1}$: no significant effects expected

POKER (NA64- e^+): PbWO₄ R&D


Massive characterization of PbWO₄ main properties (producer: CRYTUR)

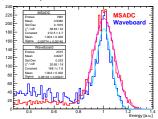

Longitudinal light transmission vs λ :

- Spectrophotometer-based setup
- Measurements reproducibility better than 1%.
- T > 70% at $\lambda = 450$ nm for all samples.

Absolute light yield

- Setup:
 - Cosmic-ray telescope with plastic-scintillator counters
 - Crystal temperature stabilized at $+18~^{\circ}\text{C}$
 - Readout: 4x S14160-6010 SiPM (6x6 mm 2 , 10 μ m pixel size)
- Single-phe amplitude obtained from a pulsed-laser measurement
- LY from energy distribution fit $\simeq 5$ phe/MeV for all samples

POKER (NA64- e^+): new FADC digitizer


Development of a new FADC, possibly based on the Waveboard platform (INFN-Roma1), to replace the existing NA64 digitizers (MSADC from Compass). Requirements:

- At least 250 MHz sampling frequency
- Support for digital trigger logic

The use of the Waveboard in NA64 has already been validated with standalone measurements:

- · Single-channel response
- Multiple-channels response

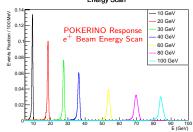
Ongoing R&D: Waveboard integration in NA64 (UCF protocol)

F. Ameli et al., NIMA 936

POKER (NA64- e^+): POKERINO prototype

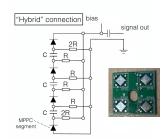
POKERINO: 3x3 PbWO₄ matrix with SiPM readout.

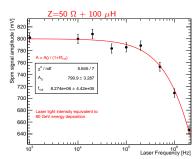
Goal: characterize the prototype response to cosmic rays / beam to validate the technical choices and measure the detector performances


Measurements:

- Cosmic-ray measurements with EEE setup in Genova: commissioning / LY measurement and uniformity studies.
- August 2023: characterization with high-energy e⁺ (10...120 GeV) at CERN, H8 beamline.

Data analysis currently in progress, first results are promising.





POKER (NA64- e^+): SiPM and readout R&D

Current readout scheme:

- 4x 6x6 mm 2 SiPMS coupled to each crystal to maximize light collection. Pixel size: 10 μ m to minimize saturation effect (Hamamatsu S14160-6010)
- Hybrid-connection to minimize capacitance toward readout amplifier while keeping low bias voltage.
- Ad-hoc biasing scheme (LC network) to minimize bias current-induced gain variations.
- Ad-hoc connection circuit with embedded thermal-dissipation planes.

NA64 long-term future: NA64-h. Invisible K^0 decay.

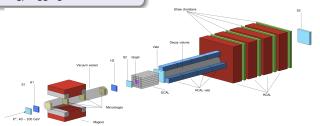
- The Standard Model prediction for $S
 ightarrow {
 m invisible}$ is extremely small, $\lesssim 10^{-16}$
 - $S o
 u ar{
 u}$ is rigorously forbidden by helicity conservation if neutrino is massless
 - $BR \simeq (M_{\nu}/M_S)^2$ due to finite neutrino mass.
 - $S \to 4\nu$ suppressed by $(G_F M_S^2)^4$.
- Any observation of these processes would be an unambiguous signal for the presence of new BSM physics.
- No upper limit exist today for $K_{S,I}^0 \to \text{invisible}$
- This challenging search is complementary to existing and planned efforts for $K_{S,L}^0 \to \pi^0 + \text{invisible (KOTO, Klever)}$ and $K^\pm \to \pi^\pm + \text{invisible (NA62)}$

S	BR(invisible)	
π^0	$< 4.4 \cdot 10^{-9}$	NA62 ⁴
η	$< 1.0 \cdot 10^{-4}$	BESIII ⁵
η'	$< 6 \cdot 10^{-4}$	BESIII
$K_{S,l}^0$	NO	
٥,٢	l	

⁴ JHEP 02 (2021) 201

⁵ PRL 97 (2006) 202002

NA64 long-term future: NA64-h. Experimental setup


NA64-h approach: exploit the charge-exchange reaction $K^-p \to K^0n$ as a source of a secondary neutral kaons, and search for the $K^0_{S,L}$ invisible decay. Unique experimental signature: complete disappearance of the beam energy.

Experiment setup

- Low-Z active target surrounded by an hermetic EM calorimeter
- High-efficiency veto counters
- Massive HCAL around and downstream a decay vessel
- Upstream beam tracking/tagging

Signal signature

- Well-defined impinging track
- MIP-like energy deposition in the active target
- No activity in ECAL or VETO
- · No activity in the HCAL

NA64 long-term future: NA64-h. Sensitivity

The number of signal events is proportional to:

- The number of K^- OT N_{K^-}
- The p numerical density in the active target n
- The charge-exchange cross section $\frac{d\sigma_{CE}}{dt}$
- The decay probability in the decay vessel length L
- The signal efficiency arepsilon
- The invisible channel branching fraction BF_I

Charge-exchange cross section:

- Data for 30 GeV/c K⁻ beam available from IHEP-70 measurement
- Regge-based model, $\rho + a_2$ t—channel exchange: energy dependence $\sim s^{\alpha(0)-1}$. Z—dependence $\sim Z^{2/3\div 1}$.

$$N_S = N_{K^-} n \cdot \int dt \frac{d\sigma_{CE}}{dt} \cdot \varepsilon(t) \left[1 - \exp\left(-\frac{L}{\gamma(t)c\tau}\right) \right] BF_I$$

$$K \mathbf{p} \to \overline{K}^0 \mathbf{n} \otimes \mathbf{30} \text{ GeV/c}$$
F. Biron et al., Nauvo Climento A 64 (1081) 89-100
$$F. Biron et al., Nauvo Climento A 64 (1081) 89-100$$

$$\frac{1}{30}$$

NA64-h sensitivity for 10^{12} K $^-$ OT

Assuming zero background events, from $N_S = N_{K_I} + N_{K_S} < N_{\mu\nu}^{90\% CL}$:

- Br($K_S \rightarrow \text{invisible}$) $\lesssim 10^{-8}$
- Br($K_L \rightarrow \text{invisible}$) $\lesssim 10^{-6}$