Formation of (anti)nuclei in high-energy collisions

F. Bellini (University and INFN, Bologna)

Physics at AMBER international workshop 2024 · Chateau de Bossey, 18 March 2024

ALMA MATER STUDIORUM Università di Bologna

European Research Council Established by the European Commission

Light (anti)nuclei as a laboratory

- Bound by the nuclear interaction as a "residual" strong interaction \rightarrow fundamental QCD
- Properties of nuclei with hyperons (hypernuclei) give access to the strength of the Y-N interaction → relevant for neutron stars (but not the topic of this talk)
- LHC as a factory of antinuclei + favourable experimental conditions
 → unprecedentedly large data samples and precision at the TeV energy scale
- Antideuteron and antihelium proposed as smoking guns for DM due to low astrophysical background → searches for cosmic antinuclei

Input for astrophysics

Antinuclei from **Dark Matter source**

1. \overline{p} , \overline{n} are produced by WIMP annihilation into SM channels Model ingredients:

- particle physics model
 e.g. *M. Korsmeier, et al, PRD* 97 (2018) 103011: (συ)_{χχ→bbar} ~ 3 x 10⁻²⁶ cm³/s, 30 < m_{DM} < 100 GeV
- DM density in a given point of the Galaxy
 M. Tanabashi et al. (PDG), PRD 98 (2018) 030001: ρ^{local}_{DM} ~ 0.4 GeV/cm³

$$q_{\rm DM}(E_{\bar{D}},\vec{x}) = \frac{1}{2} \left(\frac{\rho(\vec{x})}{m_{\rm DM}} \right)^2 \langle \sigma v \rangle_{b\bar{b}} \frac{dN_{\bar{D}}^{b\bar{b}}}{dE_{\bar{D}}},$$

2. \overline{d} and ${}^{3}\overline{He}$ produced via coalescence of anti-nucleons

$$E_A \frac{dN_A}{d^3 P_A} = B_A \left(E_p \frac{dN_p}{d^3 P_p} \right)^Z \left(E_n \frac{dN_n}{d^3 P_n} \right) \Big|_{P_p = P_n = P_A/A}^N$$

Model ingredients.

- antinucleon cross section
- coalescence probability *B*_A or momentum *p*₀ e.g. tuned to e+e- data from ALEPH, PLB 639 (2006) 129
- model and size of the particle-emitting source (?)

Antinuclei from Cosmic Ray source

Production by **spallation** reactions of primary CR with ISM

- 1. \overline{p} , \overline{n} are produced in pp, p-He, p-A reactions
 - threshold: cm frame $\sqrt{s} \ge 6 m_p \rightarrow lab$ frame/Galaxy: $E_{kin} \ge 17 m_p$
- 2. \overline{d} and ${}^{3}\overline{He}$ produced by coalescence
 - same as the DM signal, but different $\overline{p},\overline{n}$ distributions
 - coalescence momentum unknown typically tuned to pp data e.g. ALICE

Flux calculations sensitive to the astrophysical details → model dependency:

- Acceleration by Super Novae remnants
- Diffusion in the galactic magnetic field (~µGauss)
- Energy loss / gain (for loosely bound nuclei, break-up dominates)
- Solar modulations (matter mostly at low *E*, where DM signal prominent)

Copyright: ESA/Planck Collaboration, 2016

Antinuclei from Cosmic Ray source

Production by **spallation** reactions of primary CR with ISM

- \overline{p} , \overline{n} are produced in pp, p-He, p-A reactions 1.
 - threshold: cm frame $\sqrt{s} \ge 6 \text{ m}_p \rightarrow \text{lab fram}_{e}$
- 2. \overline{d} and ${}^{3}\overline{He}$ produced by coalescence
 - same as the DM signal, but different \overline{p} , \overline{n} d
 - CONSTRAIN W LHC DAT coalescence momentum unknown typically tuneo

Flux calculations sensitive to the astrophysic

\rightarrow model dependency:

- Acceleration by Super Novae remnants •
- Diffusion in the galactic magnetic field (~µGauss) ٠
- Energy loss / gain (for loosely bound nuclei, break-up dominates)
- Solar modulations (matter mostly at low *E*, where DM signal prominent)

Copyright: ESA/Planck Collaboration, 2016

Setting the stage: **antinuclei at LHC energies**

The production of antideuteron relative to antiproton increases with the CoM energy, while d/p decreases.

Setting the stage: antinuclei at LHC energies

In thermal models, (anti)nuclei are originating from a thermal source, the antimatter/matter ratio depends on $\mu_{\rm B}$ and T

$$\frac{n_{\overline{p}}}{n_p} = \exp(-2\mu_B/T) \qquad \frac{n_{\overline{d}}}{n_d} = \exp(-4\mu_B/T)$$

The production of antideuteron relative to antiproton increases with the CoM energy, while d/p decreases.

At the LHC, at central rapidity nuclei and antinuclei are produced with same abundances

 $\overline{d}/d \sim \overline{p}/p \sim 1$

Setting the stage: antinuclei at LHC energies

LHC is an antinucleus factory. Production is still rare but large integrated luminosities allow for precision measurements (Run 2 + ongoing Run 3!) The production of antideuteron relative to antiproton increases with the CoM energy, while d/p decreases.

At the LHC, at central rapidity nuclei and antinuclei are produced with same abundances

 $\overline{d}/d \sim \overline{p}/p \sim 1$

The **penalty factor** for increasing the mass number by one unit at the LHC is

- ~ 1/350 in central Pb-Pb collisions
- ~ 1/600 in p-Pb collisions
- ~ $1/10^3$ in pp collisions

Setting the stage: final state of high-energy collisions

High-energy proton-proton collisions

- Complex final-state involving multi-parton interactions, color reconnection...
- Small source (R ~ 1 fm)
- Up to $\langle dN_{ch}/d\eta \rangle \sim 40$ at the top LHC energy

Setting the stage: final state of high-energy collisions

High-energy proton-proton collisions

- Complex final-state involving multi-parton interactions, color reconnection...
- Small source (R ~ 1 fm)
- Up to $\langle dN_{ch}/d\eta \rangle \sim 40$ at the top LHC energy

High-energy heavy-ion collisions

- production of a quark-gluon plasma (QGP)
- fast, collective expansion and cooling
 → hadronisation
- Spatially extended system (R ~ few fm)
- Up to $\langle dN_{ch}/d\eta \rangle \sim 2000$ at the LHC

→ (anti)nuclei are produced after hadronisation in a hot (T ~ 100-155 MeV) and crowded environnment

System-size dependence of d, ³He and t production at the LHC

Production of light (anti)nuclei at the LHC depends on final-state multiplicity \Leftrightarrow system size (R ~ $\langle dN/d\eta \rangle^{1/3}$)

• d reproduced by models of coalescence (analytical, UrQMD hybrid) and statistical hadronisation (but no momentum distribution)

Tensions for A=3 nuclei, where more data and higher precision are advocated \rightarrow LHC Run3 ongoing!

Enhanced deuteron production in jets

Enhanced d coalescence probability in jets wrt UE observed in pp collisions,

 \rightarrow due to reduced distance in phase space of nucleons within jets

Larger enhancement in p-Pb wrt pp \rightarrow particle composition in jets and broader source in UE?

Wishlist:

- Higher precision with run3 data
- Measurements with full jet reconstruction

pp: ALICE, PRL 131 (2023) 4, 042301, p-Pb: ALICE@Quark Matter 2024

Rapidity dependence of d production

ALICE measurements used as input to extract expected flux of cosmic antideuterons

 \rightarrow Most of the flux is for |y| < 2

At ALICE, rapidity reach is limited by current detector acceptance \rightarrow ALICE 3 after Run 4

Coalescence momentum

Production depends on the coalescence probability B_A,

Butler and Pearson, PR 129, 836 (1963); Kapusta, PRC 21, 1301 (1980); Sato and Yazaki, PLB 98, 153 (1981); Nagle et al., PRC 53, 367 (1996); Scheibl and Heinz, PRC 59, 1585 (1999); Blum et al., PRD 96,103021 (2017) + ...

For nuclei that are large w.r.t. the source, the phase space is reduced to the momentum space \rightarrow coalescence momentum p_0

- $p_0 a priori unknown$
- "spherical" approach: $|\overrightarrow{p_n} \overrightarrow{p_p}| < p_0$

$$B_A = \left(\frac{4\pi}{3}p_0^3\right)^{(A-1)} \frac{1}{A!} \frac{M}{m^A}$$
 Nucleus mass
Nucleon mass

Coalescence momentum

In most astrophysical and CR applications, p_0 is tuned on data, assumed to be momentum-independent but process-dependent.

Coalescence probability in state-of-the art models

Coalescence is a quantum-mechanical multi-body problem: state-of-the-art models based on the Wigner formalism.

Analytical* calculations show that probability depends on

- the (transverse) momentum
- the nucleus size and wavefunction (*gaussian)
- the size of the nucleon source

*R. Scheibl, U. Heinz, PRC 59. 1585-1602 (1999) *F.Bellini and A. Kalweit, PRC 99, 054905 (2019)

F. Bellini - fbellini@cern.ch | PAW24

Coalescence probability in state-of-the art models

Coalescence is a quantum-mechanical multi-body problem: state-of-the-art models based on the Wigner formalism.

Analytical* calculations show that probability depends on

- the (transverse) **momentum**
- the nucleus size and wavefunction (*gaussian)
- the size of the nucleon source

$$\mathcal{B}_{2}(p) \approx \frac{2(2s_{d}+1)}{m(2s_{N}+1)^{2}}(2\pi)^{3}\int d^{3}\mathbf{r} |\phi_{d}(\mathbf{r})|^{2} \mathcal{S}_{2}(\mathbf{r}).$$
Coalescence
robability
d case)
Nucleus wave function
 \Leftrightarrow Form factor
Source function
 \Leftrightarrow Momentum correlation function

The size of the source can be extracted with **femtoscopy** i.e. measure the two-particle momentum correlation function and fitting it with a known interaction potential *L. Fabbietti, et al., Ann.Rev.Nucl.Part.Sci.* 71 (2021) 377-402

р

Recap:

- ✓ Multi-differential and high-precision data from ALICE at the LHC available
- \checkmark Recent developments in coalescence modelling in relation to the source
- ✓ Possibility to gain new insights into formation mechanisms for light (anti)nuclei
- \checkmark Possible applications to CR physics

add the fact that the production of light nuclear bound states is not modelled in Monte Carlo event generators commonly-used in HEP, like PYTHIA 8.3** or EPOS.

→ Motivation to apply coalescence as an afterburner to particle production from MC generators Focus on (anti)deuteron: simplest system, high-precision multi-differential data Focus on pp collisions: relevance for cosmic ray antinuclei Validation with precise ALICE high-energy pp data

Inspired by Kachelriess et al., EPJA 57, 167 (2021)

Data: p, d and baryon source in high-multiplicity pp collisions

ALICE Coll. JHEP 01 (2022) 106, EPJC 82, 289 (2022)

ONLY event class in which measurement of p, d production AND baryon source radius are available **simultaneously**

→ investigate the d wave function
→ validate the coalescence afterburner with

an improved source model.

Forming deuteron

The momentum-dependent production (or spectrum) of a d can be obtained by projecting the final-state density matrix of the nucleus onto the initial-state density matrix for a proton-neutron pair.

M. Mahlein, FB, L. Fabbietti et al, EPJC 83 (2023) 804, K.Blum et al., PRC 103, 014907 (2021)

Forming deuteron: nucleon source

$$H_{\rm pn}(\mathbf{r}, \mathbf{r}_{\rm d}; r_0) = \frac{1}{(2\pi r_0)^3} \exp\left(-\frac{r^2 - r_{\rm d}^2}{4 r_0^2}\right)$$

Contributions to the source term:

- **prompt** nucleon emission
- delayed nucleons from strong resonance decay (e.g. Δ, N*, ..., lifetimes ~ 10⁻²³s ~ fm/c)

To obtain a realistic modelling of the source

- resonance cocktail, hence prompt/feeddown fractions tuned based on statistical—hadronisation model
- m_T scaling of the p-n distance after time equalization, based on the available ALICE data

$$H_{\rm pn}(\mathbf{r}, \mathbf{r}_{\rm d}; r_0) = \frac{1}{(2\pi r_0)^3} \exp\left(-\frac{r^2 - r_{\rm d}^2}{4 r_0^2}\right)$$

Contributions to the source term:

- **prompt** nucleon emission
- delayed nucleons from strong resonance decay (e.g. Δ, N*, ..., lifetimes ~ 10⁻²³s ~ fm/c)

To obtain a realistic modelling of the source

- resonance cocktail, hence prompt/feeddown fractions tuned based on statistical—hadronisation model
- m_T scaling of the p-n distance after time equalization, based on the available ALICE data

Nucleon spectra are scaled to reproduce ALICE data.

Forming deuteron: wavefunction

Deuteron Wigner function:

Analytical solution only for gaussian wavefunction

 $\varphi_d(\mathbf{r}) = (\pi d^2)^{-3/4} e^{-r^2/2d^2} \qquad \mathcal{D}(\mathbf{r}, \mathbf{q}) = 8e^{-r^2/d^2} e^{-q^2d^2}$

- Numerical solutions for other wavefunctions * obtained for the first time in EPJC 83 (2023) 804
 - Hulthen

Heinz and Jacak, Ann. Rev. Nucl. Part. Sci. 49, 529 (1999)

- Argonne v18 * Wiringa et al., Phys. Rev. C 51, 38 (1995)
- χ_{FFT} N⁴LO *

Entem et al, Phys. Rev. C 96, 024004 (2017)

Forming deuteron: results

Input #1: (anti)proton and (anti)neutron p_T distributions **Input #2:** baryon source size and its m_T dependence **Input #3:** hypothesis for deuteron internal wavefunction

Mechanism: coalescence

- for each p-n pair, the source is remodelled
- the coalescence weight is computed
- coalescence is implemented as a statistical rejection method

Output: (anti)deuteron p_T distribution compared to ALICE data

Good agreement with data: given the correct source size, nucleon spectra, and a realistic wavefunction, it is possible to predict deuteron yields using no free parameters.

Summary and outlook

Precision measurements of light (anti)nuclei at the LHC by ALICE

- $\sqrt{s} = 0.9$ to 13.6 TeV
- Midrapidity (|y|<0.5)
- pp, p-Pb, Xe-Xe, Pb-Pb
- Analysis of A=3 and A=4 in pp ongoing at the LHC Run 3 More from LHCb in previous talk

Progress in modelling - one example today

- state-of-the-art coalescence model combined to measurements of the p, →
 → realistic model for (anti)deuteron production event-by-event
- Ongoing developments for astrophysical applications
 - tune PYTHIA generator to reproduce \overline{p} as a function of energy
 - Improve coalescence modelling for both DM and CR production
 - Extend to A=3 (non trivial!)

CRUCIAL EXPERIMENTAL INPUT: \overline{p} yields and spectra, \overline{d} at low energy

Contact: fbellini@cern.ch

Coalescence parameter B₂

Simple coalescence: from B_2 to p_0

Afterburner - Comparison to data for different w.f.

Simple coalescence: from B₃ to p_{0,3}

