

Istituto Nazionale di Fisica Nucleare

Strange hadrons spectroscopy at LHCb

Maurizio Martinelli on behalf the LHCb Collaboration University of Milano Bicocca and INFN

Physics at Amber international Workshop Château de Bossey, 19.03.2024

Outline

The LHCb Experiment

Strange Hadrons at LHCb

Recent Results

- Amplitude analysis of $D^0 \rightarrow K^+K^-\pi^+\pi^-$ decays (JHEP 02 (2019) 126)
- Studies of the resonance structure in $D^0 \rightarrow K^{\mp}\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$ decays (Eur. Phys. J. C78 (2018) 443)

Summary

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Study of charmonium decays to $K^{0}_{s}K\pi$ in the B \rightarrow ($K^{0}_{s}K\pi$)K channels (Phys. Rev. D 108, 032010 (2023))

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

The LHCb Experiment

The LHCb Experiment

Charm quarks produced in high η at LHC $\sigma(pp \rightarrow c\overline{c}) \sim 20\sigma(pp \rightarrow b\overline{b})$

8 (6.5 TeV): 2.19 /fb Luminosity (1/fb) 017 (6.5+2.51 TeV): 1.71 /fb + 0.10 /fb 2016 (6.5 TeV): 1.67 /fb 2015 (6.5 TeV): 0.33 /fb 012 (4.0 TeV): 2.08 /fb 2011 (3.5 TeV): 1.11 /fb 2010 (3.5 TeV): 0.04 /fb Integrated Recorded LS1 $\mathcal{L}=4x10^{32}/(cm^2s)$ 2017 2018 2010 2014 2015 2011 2012 2013 2016 Year ε_{VELO}≈98% ε_{Track}≈95% $\delta t/t=45$ fs ε_{PID}(K)≈95% σ(IP)≈20µm ε_{PID}(μ)≈97% ε_{PID}(e)≈90% δp/p≈0.5%

Int.J.Mod.Phys. A30 (2015) no.07, 1530022

The LHCb Experiment

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

JINST 3 (2008) S08005

4

UNIVERS

A New Detector for Run3 (2022-ongoing)

LHCb Upgrade

- **New Vertex Locator**
- **New Tracking Stations**
- **New RICH Electronics**
- **Fully Software Trigger**

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2023

The LHCb Experiment

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Strange Hadrons at LHCb

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Spettroscopy at LHCb

Hadrons of Any Kind

- Mesons, Baryons, Tetraquarks, Pentaquarks
- Excellent PID performance
- Flexibility of the Trigger system

Strange Hadrons at LHCb

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

/

Light-Hadrons Spectroscopy at LHCb

Amplitude Analyses

Strange Hadrons at LHCb

- Direct production of light hadrons obviously happens but the multiplicity of tracks is so large that they are covered by large background
- Rather study resonances in heavy flavored particle decays (D, B, baryons)
- Allowed by clean signals and good understanding of detector efficiency

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

UNIVERSI

Recent Results

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Strange Spectroscopy in D^o Decays

Amplitude Analysis of 4-Body Charm Decays

- 4-Body Charm decays have a rich resonant structure, especially at low masses $(<1.7GeV/c^{2})$
- Good knowledge of the resonant substructure of the decay is important for other studies (i.e. CP Violation)
- With pseudoscalars only, 5D phase space

Recent Results

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Amplitude Analysis of 4-Body D^o Decays

B-tagged Decays

• D^o mesons reconstructed from $B \rightarrow D^{*+}\mu^-X$ with $D^{*+} \rightarrow D^0\pi^+$, or $B \rightarrow D^0\mu^-X$ Trigger selection on μ to improve efficiency determination Requirements on decay chain improve signal purity

Efficiency

- **Determined from simulation reconstructed as data**
- Included in the fit by performing all the normalisation integrals over the simulated data - *integration* sample
- Normalisation integrals independent from integration sample, but their uncertainty is \rightarrow use approximation of model to generate the integration sample - importance sampling

Amplitude Analysis of 4-Body D^o Decays

Isobar Model

 D^0

- Cascade decays $D^0 \rightarrow X P_4$ \rightarrow Y P₃ $\rightarrow P_1P_2$
- Quasi two-body decays

Amplitudes are product of dynamical functions for each isobar and a spin factor Dynamical functions: Breit-Wigner; K-matrix Spin factor from Covariant tensors

BW:
$$\mathcal{T}(s) = \frac{1}{m_0^2}$$

STR ONG

2:20

Strange Spectroscopy in D⁰ decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

$$\sqrt{k}B_L(q,0)$$

$$-s - im_0\Gamma(s)$$

Signal Yields of $D^0 \rightarrow K \mp \Pi^{\pm}\Pi^{\mp}\Pi^{\pm}$

RS and WS samples

- **Right-Sign: Cabibbo favoured D**⁰ \rightarrow K⁻ $\pi^+\pi^-\pi^+$ (N_s=891k, P=99.6% in 2011/12)
- Wrong-Sign: Doubly Cabibbo suppressed $D^0 \rightarrow K^+\pi^-\pi^+\pi^-$ (N_s=3k, P=82.4% in 2011/12)
- **Contamination of RS in WS (Mistag)**

EUR. PHYS. J. C78 (2018) 443

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Resonant Structure of D⁰ \longrightarrow **K** \mp **T** \pm **T**

Fit Results $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$

	Fit Fraction [%]	g	a
$\left[\overline{K}^{*}(892)^{0}\rho(770)^{0}\right]^{L=0}$	$7.34 \pm 0.08 \pm 0.47$	$0.196 \pm 0.001 \pm 0.015$	-22.4
$\left[\overline{K}^{*}(892)^{0}\rho(770)^{0}\right]^{L=1}$	$6.03 \pm 0.05 \pm 0.25$	$0.362 \pm 0.002 \pm 0.010$	-102.9
$\left[\overline{K}^{*}(892)^{0}\rho(770)^{0}\right]^{L=2}$	$8.47 \pm 0.09 \pm 0.67$		
$\left[\rho(1450)^0 \overline{K^*}(892)^0\right]^{L=0}$	$0.61 \pm 0.04 \pm 0.17$	$0.162 \pm 0.005 \pm 0.025$	-86.1
$\left[\rho(1450)^0 \overline{K}^*(892)^0\right]^{L=1}$	$1.98 \pm 0.03 \pm 0.33$	$0.643 \pm 0.006 \pm 0.058$	97.3
$\left[\rho(1450)^0 \overline{K}^*(892)^0\right]^{L=2}$	$0.46 \pm 0.03 \pm 0.15$	$0.649 \pm 0.021 \pm 0.105$	-15.6
$\rho(770)^0 \left[K^- \pi^+\right]^{L=0}$	$0.93 \pm 0.03 \pm 0.05$	$0.338 \pm 0.006 \pm 0.011$	73.0
$\alpha_{3/2}$		$1.073 \pm 0.008 \pm 0.021$	-130.9
$\overline{K}^{*}(892)^{0} \left[\pi^{+}\pi^{-}\right]^{L=0}$	$2.35 \pm 0.09 \pm 0.33$		
$f_{\pi\pi}$		$0.261 \pm 0.005 \pm 0.024$	-149.0
eta_1		$0.305 \pm 0.011 \pm 0.046$	65.6
$a_1(1260)^+K^-$	$38.07 \pm 0.24 \pm 1.38$	$0.813 \pm 0.006 \pm 0.025$	-149.2
$K_1(1270)^-\pi^+$	$4.66 \pm 0.05 \pm 0.39$	$0.362 \pm 0.004 \pm 0.015$	114.2
$K_1(1400)^- \left[\overline{K}^*(892)^0\pi^-\right]\pi^+$	$1.15 \pm 0.04 \pm 0.20$	$0.127 \pm 0.002 \pm 0.011$	-169.8
$K_2^*(1430)^- \left[\overline{K}^*(892)^0\pi^-\right]\pi^+$	$0.46 \pm 0.01 \pm 0.03$	$0.302 \pm 0.004 \pm 0.011$	-77.7
$K(1460)^{-}\pi^{+}$	$3.75 \pm 0.10 \pm 0.37$	$0.122 \pm 0.002 \pm 0.012$	172.7
$\left[K^{-}\pi^{+}\right]^{L=0}\left[\pi^{+}\pi^{-}\right]^{L=0}$	$22.04 \pm 0.28 \pm 2.09$		
$\alpha_{3/2}$		$0.870 \pm 0.010 \pm 0.030$	-149.2
$lpha_{K\eta'}$		$2.614 \pm 0.141 \pm 0.281$	-19.1
eta_1		$0.554 \pm 0.009 \pm 0.053$	35.3
$f_{\pi\pi}$		$0.082 \pm 0.001 \pm 0.008$	-147.0
Sum of Fit Fractions	$98.29 \pm 0.37 \pm 0.84$		
χ^2/ u	40483/32701 = 1.238		

Strange Spectroscopy in D⁰ decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Resonant Structure of D⁰ \longrightarrow **K** \mp **T** \pm **T**

Fit Results $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$

		Fit Fraction [%]	g	a
	$\left[\overline{K}^{*}(892)^{0}\rho(770)^{0}\right]^{L=0}$	$7.34 \pm 0.08 \pm 0.47$	$0.196 \pm 0.001 \pm 0.015$	-22.4
	$\left[\overline{K}^{*}(892)^{0}\rho(770)^{0}\right]^{L=1}$	$6.03 \pm 0.05 \pm 0.25$	$0.362 \pm 0.002 \pm 0.010$	-102.9
	$\left[\overline{K}^{*}(892)^{0}\rho(770)^{0}\right]^{L=2}$	$8.47 \pm 0.09 \pm 0.67$		
	$\left[\rho(1450)^0 \overline{K}^*(892)^0\right]^{L=0}$	$0.61 \pm 0.04 \pm 0.17$	$0.162 \pm 0.005 \pm 0.025$	-86.1
	$\left[\rho(1450)^0 \overline{K}^*(892)^0\right]^{L=1}$	$1.98 \pm 0.03 \pm 0.33$	$0.643 \pm 0.006 \pm 0.058$	97.3
	$\left[\rho(1450)^0 \overline{K}^*(892)^0\right]^{L=2}$	$0.46 \pm 0.03 \pm 0.15$	$0.649 \pm 0.021 \pm 0.105$	-15.6
	$\rho(770)^0 \left[K^- \pi^+\right]^{L=0}$	$0.93 \pm 0.03 \pm 0.05$	$0.338 \pm 0.006 \pm 0.011$	73.0
	$\alpha_{3/2}$		$1.073 \pm 0.008 \pm 0.021$	-130.9
	$\overline{K}^{*}(892)^{0} \left[\pi^{+}\pi^{-}\right]^{L=0}$	$2.35 \pm 0.09 \pm 0.33$		
	$f_{\pi\pi}$		$0.261 \pm 0.005 \pm 0.024$	-149.0
	β_1		$0.305 \pm 0.011 \pm 0.046$	65.6
>	$a_1(1260)^+K^-$	$38.07 \pm 0.24 \pm 1.38$	$0.813 \pm 0.006 \pm 0.025$	-149.2
	$K_1(1270)^-\pi^+$	$4.66 \pm 0.05 \pm 0.39$	$0.362 \pm 0.004 \pm 0.015$	114.2
	$K_1(1400)^- \left[\overline{K}^*(892)^0\pi^-\right]\pi^+$	$1.15 \pm 0.04 \pm 0.20$	$0.127 \pm 0.002 \pm 0.011$	-169.8
	$K_2^*(1430)^- \left[\overline{K}^*(892)^0\pi^-\right]\pi^+$	$0.46 \pm 0.01 \pm 0.03$	$0.302 \pm 0.004 \pm 0.011$	-77.7
	$K(1460)^{-}\pi^{+}$	$3.75 \pm 0.10 \pm 0.37$	$0.122 \pm 0.002 \pm 0.012$	172.7
	$\left[K^{-}\pi^{+}\right]^{L=0}\left[\pi^{+}\pi^{-}\right]^{L=0}$	$22.04 \pm 0.28 \pm 2.09$		
	$\alpha_{3/2}$		$0.870 \pm 0.010 \pm 0.030$	-149.2
SIK	$lpha_{K\eta'}$		$2.614 \pm 0.141 \pm 0.281$	-19.1
2:::20	eta_1		$0.554 \pm 0.009 \pm 0.053$	35.3
	$f_{\pi\pi}$		$0.082 \pm 0.001 \pm 0.008$	-147.0
	Sum of Fit Fractions	$98.29 \pm 0.37 \pm 0.84$		
	χ^2/ u	40483/32701 = 1.238		
LINE FOR THE REPORT OF MULTI-				

Strange Spectroscopy in D⁰ decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Resonant Structure of D⁰ \longrightarrow **K** \mp **T** \pm **T**

Fit Results $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$

		Fit Fraction [%]	g	a
	$\left[\overline{K}^{*}(892)^{0}\rho(770)^{0}\right]^{L=0}$	$7.34 \pm 0.08 \pm 0.47$	$0.196 \pm 0.001 \pm 0.015$	-22.4
	$\left[\overline{K^*(892)^0}\rho(770)^0\right]^{L=1}$	$6.03 \pm 0.05 \pm 0.25$	$0.362 \pm 0.002 \pm 0.010$	-102.9
	$\left[\overline{K}^{*}(892)^{0}\rho(770)^{0}\right]^{L=2}$	$8.47 \pm 0.09 \pm 0.67$		
	$\left[\rho(1450)^0 \overline{K}^*(892)^0\right]^{L=0}$	$0.61 \pm 0.04 \pm 0.17$	$0.162 \pm 0.005 \pm 0.025$	-86.1
	$\left[\rho(1450)^0 \overline{K}^*(892)^0\right]^{L=1}$	$1.98 \pm 0.03 \pm 0.33$	$0.643 \pm 0.006 \pm 0.058$	97.3
	$\left[\rho(1450)^0 \overline{K}^*(892)^0\right]^{L=2}$	$0.46 \pm 0.03 \pm 0.15$	$0.649 \pm 0.021 \pm 0.105$	-15.6
	$\rho(770)^0 \left[K^- \pi^+\right]^{L=0}$	$0.93 \pm 0.03 \pm 0.05$	$0.338 \pm 0.006 \pm 0.011$	73.0
	$\alpha_{3/2}$		$1.073 \pm 0.008 \pm 0.021$	-130.9
	$\overline{K}^{*}(892)^{0} \left[\pi^{+}\pi^{-}\right]^{L=0}$	$2.35 \pm 0.09 \pm 0.33$		
	$f_{\pi\pi}$		$0.261 \pm 0.005 \pm 0.024$	-149.0
	β_1		$0.305 \pm 0.011 \pm 0.046$	65.6
>	$a_1(1260)^+K^-$	$38.07 \pm 0.24 \pm 1.38$	$0.813 \pm 0.006 \pm 0.025$	-149.2
	$K_1(1270)^-\pi^+$	$4.66 \pm 0.05 \pm 0.39$	$0.362 \pm 0.004 \pm 0.015$	114.2
	$K_1(1400)^- \left[\overline{K}^*(892)^0\pi^-\right]\pi^+$	$1.15 \pm 0.04 \pm 0.20$	$0.127 \pm 0.002 \pm 0.011$	-169.8
	$K_2^*(1430)^- \left[\overline{K}^*(892)^0\pi^-\right]\pi^+$	$0.46 \pm 0.01 \pm 0.03$	$0.302 \pm 0.004 \pm 0.011$	-77.7
	$K(1460)^{-}\pi^{+}$	$3.75 \pm 0.10 \pm 0.37$	$0.122 \pm 0.002 \pm 0.012$	172.7
	$\left[K^{-}\pi^{+}\right]^{L=0}\left[\pi^{+}\pi^{-}\right]^{L=0}$	$22.04 \pm 0.28 \pm 2.09$		
	$lpha_{3/2}$		$0.870 \pm 0.010 \pm 0.030$	-149.2
SIK	$lpha_{K\eta'}$		$2.614 \pm 0.141 \pm 0.281$	-19.1
2:::20	β_1		$0.554 \pm 0.009 \pm 0.053$	35.3
	$f_{\pi\pi}$		$0.082 \pm 0.001 \pm 0.008$	-147.0
	Sum of Fit Fractions	$98.29 \pm 0.37 \pm 0.84$		
	χ^2/ν	40483/32701 = 1.238		
a second and the second second				

Strange Spectroscopy in D⁰ decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

$K_1(12/0)^{-1}$	\mathbf{K}_1	(127	0)-
------------------	----------------	------	-----

$K_1(1270)^ m_0 = 128$	$89.81 \pm 0.56 \pm 1.66 \mathrm{MeV}$	$c^2; \Gamma_0 = 116.11 \pm 1.65$	$\pm 2.96 \mathrm{MeV}/c^2$
	Partial Fractions [%]	g	$\arg(g)[^{\mathrm{o}}]$
$ ho(770)^{0}K^{-}$	$96.30 \pm 1.64 \pm 6.61$		
$ ho(1450)^{0}K^{-}$	$49.09 \pm 1.58 \pm 11.54$	$2.016 \pm 0.026 \pm 0.211$	$-119.5 \pm 0.9 \pm 2.3$
$\overline{K}^*(892)^0\pi^-$	$27.08 \pm 0.64 \pm 2.82$	$0.388 \pm 0.007 \pm 0.033$	$-172.6 \pm 1.1 \pm 6.0$
$[K^{-}\pi^{+}]^{L=0}\pi^{-}$	$22.90 \pm 0.72 \pm 1.89$	$0.554 \pm 0.010 \pm 0.037$	$53.2 \pm 1.1 \pm 1.9$
$\left[\overline{K}^{*}(892)^{0}\pi^{-}\right]^{L=2}$	$3.47 \pm 0.17 \pm 0.31$	$0.769 \pm 0.021 \pm 0.048$	$-19.3 \pm 1.6 \pm 6.7$
$\omega(782) [\pi^+\pi^-] K^-$	$1.65 \pm 0.11 \pm 0.16$	$0.146 \pm 0.005 \pm 0.009$	$9.0 \pm 2.1 \pm 5.7$

K(1460)⁻

The presence of this resonance is further justified by the Argand diagram from the Model Independent Partial Wave Analysis

$K(1460)^{-}$ $m_0 =$	$1482.40 \pm 3.58 \pm 15.22$ I	MeV/c^2 ; $\Gamma_0 = 335.60 \pm 600$	6.20
	Partial Fractions [%]	g	
$\overline{K}^{*}(892)^{0}\pi^{-}$	$51.39 \pm 1.00 \pm 1.71$		
$[\pi^+\pi^-]^{L=0} K^-$	$31.23 \pm 0.83 \pm 1.78$		
f_{KK}		$1.819 \pm 0.059 \pm 0.189$	_
eta_1		$0.813 \pm 0.032 \pm 0.136$	1
eta_0		$0.315 \pm 0.010 \pm 0.022$	4

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

EUR. PHYS. J. C78 (2018) 443

 $0 \pm 8.65 \,\mathrm{MeV}/c^2$ $\arg(g)[^{o}]$

 $80.8 \pm 2.2 \pm 6.6$ $12.9 \pm 2.6 \pm 9.5$ $46.7 \pm 1.9 \pm 3.0$

Resonant Structure of $D^{\circ} \longrightarrow K^{+}\pi^{-}\pi^{+}\pi^{-}$

Fit Results $D^0 \rightarrow K^+\pi^-\pi^+\pi^-$

- 3-Body resonance parameters fixed to RS fit
- Largest fraction from $K_1\pi$ (colour-favoured W emission)

	Fit Fraction [%]	g	$\arg(g)[^o]$
$\left[K^*(892)^0\rho(770)^0\right]^{L=0}$	$9.62 \pm 1.58 \pm 1.03$	$0.205 \pm 0.019 \pm 0.010$	$-8.5 \pm 4.7 \pm$
$\left[K^*(892)^0\rho(770)^0\right]^{L=1}$	$8.42 \pm 0.83 \pm 0.57$	$0.390 \pm 0.029 \pm 0.006$	$-91.4 \pm 4.7 =$
$\left[K^*(892)^0\rho(770)^0\right]^{L=2}$	$10.19 \pm 1.03 \pm 0.79$		
$\left[\rho(1450)^0 K^*(892)^0\right]^{L=0}$	$8.16 \pm 1.24 \pm 1.69$	$0.541 \pm 0.042 \pm 0.055$	$-21.8 \pm 6.5 \pm$
$K_1(1270)^+\pi^-$	$18.15 \pm 1.11 \pm 2.30$	$0.653 \pm 0.040 \pm 0.058$	$-110.7 \pm 5.1 =$
$K_1(1400)^+ \left[K^*(892)^0\pi^+\right]\pi^-$	$26.55 \pm 1.97 \pm 2.13$	$0.560 \pm 0.037 \pm 0.031$	$29.8 \pm 4.2 =$
$\left[K^{+}\pi^{-}\right]^{L=0}\left[\pi^{+}\pi^{-}\right]^{L=0}$	$20.90 \pm 1.30 \pm 1.50$		
$lpha_{3/2}$		$0.686 \pm 0.043 \pm 0.022$	$-149.4 \pm 4.3 \pm$
eta_1		$0.438 \pm 0.044 \pm 0.030$	$-132.4 \pm 6.5 \pm$
$f_{\pi\pi}$		$0.050 \pm 0.006 \pm 0.005$	$74.8 \pm 7.5 =$
Sum of Fit Fractions χ^2/ν	$\begin{array}{c} 101.99 \pm 2.90 \pm 2.85 \\ 350/239 = 1.463 \end{array}$		
	. U		- . U
			=
	A D		S S
**		•••	
C ↔ ↔ ↔		C • • • • • •	→
ū •	— • ū	ū •	• Ū

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Signal Yield of $D^{\circ} \longrightarrow K^+K^-\pi^+\pi^-$

Run1 Sample (2011/12)

- Cabibbo suppressed $D^0 \rightarrow K^+K^-\pi^+\pi^-$ (N_S=160k, P=82.8%)
- Mass fit used to extract fraction of signal decays and background in $\pm 2\sigma$ region

Strange Spectroscopy in D⁰ decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

=82.8%) s and background in $\pm 2\sigma$ region

Resonant Structure of D⁰ \longrightarrow K⁺K⁻TT⁺TT⁻

Fit Results $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$

Amplitude	$ c_k $	$\arg(c_k)$ [rad]	Fit fraction [%]
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=0}$	1 (fixed)	0 (fixed)	$23.82 \pm 0.38 \pm 0.56$
$D^0 \to K_1(1400)^+ K^-$	$0.614 \pm 0.011 \pm 0.031$	$1.05 \pm 0.02 \pm 0.05$	$19.08 \pm 0.60 \pm 1.40$
$D^0 \to [K^- \pi^+]_{L=0} [K^+ \pi^-]_{L=0}$	$0.282 \pm 0.004 \pm 0.008$	$-0.60 \pm 0.02 \pm 0.10$	$18.46 \pm 0.35 \pm 0.94$
$D^0 \to K_1(1270)^+ K^-$	$0.452 \pm 0.011 \pm 0.017$	$2.02 \pm 0.03 \pm 0.05$	$18.05 \pm 0.52 \pm 0.98$
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=0}$	$0.259 \pm 0.004 \pm 0.018$	$-0.27 \pm 0.02 \pm 0.03$	$9.18 \pm 0.21 \pm 0.28$
$D^0 \to K^* (1680)^0 [K^- \pi^+]_{L=0}$	$2.359 \pm 0.036 \pm 0.624$	$0.44 \pm 0.02 \pm 0.03$	$6.61 \pm 0.15 \pm 0.3$
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=1}$	$0.249 \pm 0.005 \pm 0.017$	$1.22 \pm 0.02 \pm 0.03$	$4.90 \pm 0.16 \pm 0.18$
$D^0 \to K_1(1270)^- K^+$	$0.220 \pm 0.006 \pm 0.011$	$2.09 \pm 0.03 \pm 0.07$	$4.29 \pm 0.18 \pm 0.41$
$D^0 \to [K^+ K^-]_{L=0} [\pi^+ \pi^-]_{L=0}$	$0.120 \pm 0.003 \pm 0.018$	$-2.49 \pm 0.03 \pm 0.16$	$3.14 \pm 0.17 \pm 0.72$
$D^0 \to K_1(1400)^- K^+$	$0.236 \pm 0.008 \pm 0.018$	$0.04 \pm 0.04 \pm 0.09$	$2.82 \pm 0.19 \pm 0.39$
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=0}$	$0.823 \pm 0.023 \pm 0.218$	$2.99 \pm 0.03 \pm 0.05$	$2.75 \pm 0.15 \pm 0.19$
$D^0 \to [\overline{K^*}(1680)^0 K^*(892)^0]_{L=1}$	$1.009 \pm 0.022 \pm 0.276$	$-2.76 \pm 0.02 \pm 0.03$	$2.70 \pm 0.11 \pm 0.09$
$D^0 \to \overline{K}^* (1680)^0 [K^+ \pi^-]_{L=0}$	$1.379 \pm 0.029 \pm 0.373$	$1.06 \pm 0.02 \pm 0.03$	$2.41 \pm 0.09 \pm 0.2$
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=2}$	$1.311 \pm 0.031 \pm 0.018$	$0.54 \pm 0.02 \pm 0.02$	$2.29 \pm 0.08 \pm 0.08$
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=2}$	$0.652 \pm 0.018 \pm 0.043$	$2.85 \pm 0.03 \pm 0.04$	$1.85 \pm 0.09 \pm 0.10$
$D^0 \to \phi(1020)[\pi^+\pi^-]_{L=0}$	$0.049 \pm 0.001 \pm 0.004$	$-1.71\pm 0.04\pm 0.37$	$1.49 \pm 0.09 \pm 0.33$
$D^0 \to [K^*(1680)^0 \overline{K^*}(892)^0]_{L=1}$	$0.747 \pm 0.021 \pm 0.203$	$0.14 \pm 0.03 \pm 0.04$	$1.48 \pm 0.08 \pm 0.10$
$D^0 \rightarrow [\phi(1020)\rho(1450)^0]_{L=1}$	$0.762 \pm 0.035 \pm 0.068$	$1.17 \pm 0.04 \pm 0.04$	$0.98 \pm 0.09 \pm 0.03$
$D^0 \rightarrow a_0(980)^0 f_2(1270)^0$	$1.524 \pm 0.058 \pm 0.189$	$0.21 \pm 0.04 \pm 0.19$	$0.70 \pm 0.05 \pm 0.03$
$D^0 \to a_1(1260)^+\pi^-$	$0.189 \pm 0.011 \pm 0.042$	$-2.84 \pm 0.07 \pm 0.38$	$0.46 \pm 0.05 \pm 0.22$
$D^0 \to a_1(1260)^- \pi^+$	$0.188 \pm 0.014 \pm 0.031$	$0.18 \pm 0.06 \pm 0.43$	$0.45 \pm 0.06 \pm 0.16$
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=1}$	$0.160 \pm 0.011 \pm 0.005$	$0.28 \pm 0.07 \pm 0.03$	$0.43 \pm 0.05 \pm 0.03$
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=2}$	$1.218 \pm 0.089 \pm 0.354$	$-2.44 \pm 0.08 \pm 0.15$	$0.33 \pm 0.05 \pm 0.00$
$D^0 \to [K^+ K^-]_{L=0} (\rho - \omega)^0$	$0.195 \pm 0.015 \pm 0.035$	$2.95 \pm 0.08 \pm 0.29$	$0.27 \pm 0.04 \pm 0.03$
$D^0 \rightarrow [\phi(1020)f_2(1270)^0]_{L=1}$	$1.388 \pm 0.095 \pm 0.257$	$1.71 \pm 0.06 \pm 0.37$	$0.18 \pm 0.02 \pm 0.0'$
$D^0 \to [K^*(892)^0 \overline{K}_2^*(1430)^0]_{L=1}$	$1.530 \pm 0.086 \pm 0.131$	$2.01 \pm 0.07 \pm 0.09$	$0.18 \pm 0.02 \pm 0.02$
		Sum of fit fractions	$129.32 \pm 1.09 \pm 2.33$
		χ^2/ndf	9242/8121 = 1.14

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

JHEP 02 (2019) 126

Resonant Structure of D⁰ \longrightarrow K⁺K⁻TT⁺TT⁻

Fit Results $D^0 \rightarrow K^+K^-\pi^+\pi^-$

Amplitude	$ c_k $	$\arg(c_k)$ [rad]	Fit fraction [%]
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=0}$	1 (fixed)	0 (fixed)	$23.82 \pm 0.38 \pm 0.5$
$D^0 \to K_1(1400)^+ K^-$	$0.614 \pm 0.011 \pm 0.031$	$1.05 \pm 0.02 \pm 0.05$	$19.08 \pm 0.60 \pm 1.4$
$D^0 \to [K^-\pi^+]_{L=0}[K^+\pi^-]_{L=0}$	$0.282 \pm 0.004 \pm 0.008$	$-0.60\pm 0.02\pm 0.10$	$18.46 \pm 0.35 \pm 0.9$
$D^0 \to K_1(1270)^+ K^-$	$0.452 \pm 0.011 \pm 0.017$	$2.02 \pm 0.03 \pm 0.05$	$18.05 \pm 0.52 \pm 0.9$
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=0}$	$0.259 \pm 0.004 \pm 0.018$	$-0.27 \pm 0.02 \pm 0.03$	$9.18 \pm 0.21 \pm 0.2$
$D^0 \to K^* (1680)^0 [K^- \pi^+]_{L=0}$	$2.359 \pm 0.036 \pm 0.624$	$0.44 \pm 0.02 \pm 0.03$	$6.61 \pm 0.15 \pm 0.3$
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=1}$	$0.249 \pm 0.005 \pm 0.017$	$1.22 \pm 0.02 \pm 0.03$	$4.90 \pm 0.16 \pm 0.1$
$D^0 \to K_1(1270)^- K^+$	$0.220 \pm 0.006 \pm 0.011$	$2.09 \pm 0.03 \pm 0.07$	$4.29 \pm 0.18 \pm 0.4$
$D^0 \to [K^+ K^-]_{L=0} [\pi^+ \pi^-]_{L=0}$	$0.120 \pm 0.003 \pm 0.018$	$-2.49 \pm 0.03 \pm 0.16$	$3.14 \pm 0.17 \pm 0.7$
$D^0 \to K_1(1400)^- K^+$	$0.236 \pm 0.008 \pm 0.018$	$0.04 \pm 0.04 \pm 0.09$	$2.82 \pm 0.19 \pm 0.3$
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=0}$	$0.823 \pm 0.023 \pm 0.218$	$2.99 \pm 0.03 \pm 0.05$	$2.75 \pm 0.15 \pm 0.1$
$D^0 \to [\overline{K}^*(1680)^0 K^*(892)^0]_{L=1}$	$1.009 \pm 0.022 \pm 0.276$	$-2.76 \pm 0.02 \pm 0.03$	$2.70 \pm 0.11 \pm 0.0$
$D^0 \to \overline{K}^* (1680)^0 [K^+ \pi^-]_{L=0}$	$1.379 \pm 0.029 \pm 0.373$	$1.06 \pm 0.02 \pm 0.03$	$2.41 \pm 0.09 \pm 0.2$
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=2}$	$1.311 \pm 0.031 \pm 0.018$	$0.54 \pm 0.02 \pm 0.02$	$2.29 \pm 0.08 \pm 0.0$
$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=2}$	$0.652 \pm 0.018 \pm 0.043$	$2.85 \pm 0.03 \pm 0.04$	$1.85 \pm 0.09 \pm 0.1$
$D^0 \to \phi(1020)[\pi^+\pi^-]_{L=0}$	$0.049 \pm 0.001 \pm 0.004$	$-1.71\pm 0.04\pm 0.37$	$1.49 \pm 0.09 \pm 0.3$
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=1}$	$0.747 \pm 0.021 \pm 0.203$	$0.14 \pm 0.03 \pm 0.04$	$1.48 \pm 0.08 \pm 0.1$
$D^0 \to [\phi(1020)\rho(1450)^0]_{L=1}$	$0.762 \pm 0.035 \pm 0.068$	$1.17 \pm 0.04 \pm 0.04$	$0.98 \pm 0.09 \pm 0.0$
$D^0 \to a_0(980)^0 f_2(1270)^0$	$1.524 \pm 0.058 \pm 0.189$	$0.21 \pm 0.04 \pm 0.19$	$0.70 \pm 0.05 \pm 0.0$
$D^0 \to a_1(1260)^+\pi^-$	$0.189 \pm 0.011 \pm 0.042$	$-2.84 \pm 0.07 \pm 0.38$	$0.46 \pm 0.05 \pm 0.2$
$D^0 \to a_1(1260)^- \pi^+$	$0.188 \pm 0.014 \pm 0.031$	$0.18 \pm 0.06 \pm 0.43$	$0.45 \pm 0.06 \pm 0.1$
$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=1}$	$0.160 \pm 0.011 \pm 0.005$	$0.28 \pm 0.07 \pm 0.03$	$0.43 \pm 0.05 \pm 0.0$
$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=2}$	$1.218 \pm 0.089 \pm 0.354$	$-2.44 \pm 0.08 \pm 0.15$	$0.33 \pm 0.05 \pm 0.0$
$D^0 \to [K^+ K^-]_{L=0} (\rho - \omega)^0$	$0.195 \pm 0.015 \pm 0.035$	$2.95 \pm 0.08 \pm 0.29$	$0.27 \pm 0.04 \pm 0.0$
$D^0 \to [\phi(1020)f_2(1270)^0]_{L=1}$	$1.388 \pm 0.095 \pm 0.257$	$1.71 \pm 0.06 \pm 0.37$	$0.18 \pm 0.02 \pm 0.0$
$D^0 \to [K^*(892)^0 \overline{K}_2^*(1430)^0]_{L=1}$	$1.530 \pm 0.086 \pm 0.131$	$2.01 \pm 0.07 \pm 0.09$	$0.18 \pm 0.02 \pm 0.0$
		Sum of fit fractions	$129.32 \pm 1.09 \pm 2.3$
		χ^2/ndf	9242/8121 = 1.1

JHEP 02 (2019) 126

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Resonant Structure of D⁰ \longrightarrow K⁺K⁻TT⁺TT⁻

Fit Results $D^0 \rightarrow K^+K^-\pi^+\pi^-$

	Amplitude	$ c_k $	$\arg(c_k)$ [rad]	Fit fraction [%]
	$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=0}$	1 (fixed)	0 (fixed)	$23.82 \pm 0.38 \pm 0.50$
	$D^0 \to K_1(1400)^+ K^-$	$0.614 \pm 0.011 \pm 0.031$	$1.05 \pm 0.02 \pm 0.05$	$19.08 \pm 0.60 \pm 1.40$
	$D^0 \to [K^- \pi^+]_{L=0} [K^+ \pi^-]_{L=0}$	$0.282 \pm 0.004 \pm 0.008$	$-0.60 \pm 0.02 \pm 0.10$	$18.46 \pm 0.35 \pm 0.94$
	$D^0 \to K_1(1270)^+ K^-$	$0.452 \pm 0.011 \pm 0.017$	$2.02 \pm 0.03 \pm 0.05$	$18.05 \pm 0.52 \pm 0.98$
	$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=0}$	$0.259 \pm 0.004 \pm 0.018$	$-0.27 \pm 0.02 \pm 0.03$	$9.18 \pm 0.21 \pm 0.28$
	$D^0 \to K^* (1680)^0 [K^- \pi^+]_{L=0}$	$2.359 \pm 0.036 \pm 0.624$	$0.44 \pm 0.02 \pm 0.03$	$6.61 \pm 0.15 \pm 0.37$
	$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=1}$	$0.249 \pm 0.005 \pm 0.017$	$1.22 \pm 0.02 \pm 0.03$	$4.90 \pm 0.16 \pm 0.18$
	$D^0 \to K_1(1270)^- K^+$	$0.220 \pm 0.006 \pm 0.011$	$2.09 \pm 0.03 \pm 0.07$	$4.29 \pm 0.18 \pm 0.41$
	$D^0 \to [K^+ K^-]_{L=0} [\pi^+ \pi^-]_{L=0}$	$0.120 \pm 0.003 \pm 0.018$	$-2.49 \pm 0.03 \pm 0.16$	$3.14 \pm 0.17 \pm 0.72$
	$D^0 \to K_1(1400)^- K^+$	$0.236 \pm 0.008 \pm 0.018$	$0.04 \pm 0.04 \pm 0.09$	$2.82 \pm 0.19 \pm 0.39$
	$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=0}$	$0.823 \pm 0.023 \pm 0.218$	$2.99 \pm 0.03 \pm 0.05$	$2.75 \pm 0.15 \pm 0.19$
	$D^0 \to [\overline{K^*}(1680)^0 K^*(892)^0]_{L=1}$	$1.009 \pm 0.022 \pm 0.276$	$-2.76 \pm 0.02 \pm 0.03$	$2.70 \pm 0.11 \pm 0.09$
	$D^0 \to \overline{K}^*(1680)^0 [K^+\pi^-]_{L=0}$	$1.379 \pm 0.029 \pm 0.373$	$1.06 \pm 0.02 \pm 0.03$	$2.41 \pm 0.09 \pm 0.27$
	$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=2}$	$1.311 \pm 0.031 \pm 0.018$	$0.54 \pm 0.02 \pm 0.02$	$2.29 \pm 0.08 \pm 0.08$
	$D^0 \to [K^*(892)^0 \overline{K}^*(892)^0]_{L=2}$	$0.652 \pm 0.018 \pm 0.043$	$2.85 \pm 0.03 \pm 0.04$	$1.85 \pm 0.09 \pm 0.10$
	$D^0 \to \phi(1020)[\pi^+\pi^-]_{L=0}$	$0.049 \pm 0.001 \pm 0.004$	$-1.71\pm 0.04\pm 0.37$	$1.49 \pm 0.09 \pm 0.33$
	$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=1}$	$0.747 \pm 0.021 \pm 0.203$	$0.14 \pm 0.03 \pm 0.04$	$1.48 \pm 0.08 \pm 0.10$
	$D^0 \to [\phi(1020)\rho(1450)^0]_{L=1}$	$0.762 \pm 0.035 \pm 0.068$	$1.17 \pm 0.04 \pm 0.04$	$0.98 \pm 0.09 \pm 0.08$
	$D^0 \to a_0(980)^0 f_2(1270)^0$	$1.524 \pm 0.058 \pm 0.189$	$0.21 \pm 0.04 \pm 0.19$	$0.70 \pm 0.05 \pm 0.08$
	$D^0 \to a_1(1260)^+\pi^-$	$0.189 \pm 0.011 \pm 0.042$	$-2.84 \pm 0.07 \pm 0.38$	$0.46 \pm 0.05 \pm 0.22$
	$D^0 \to a_1(1260)^- \pi^+$	$0.188 \pm 0.014 \pm 0.031$	$0.18 \pm 0.06 \pm 0.43$	$0.45 \pm 0.06 \pm 0.16$
	$D^0 \to [\phi(1020)(\rho - \omega)^0]_{L=1}$	$0.160 \pm 0.011 \pm 0.005$	$0.28 \pm 0.07 \pm 0.03$	$0.43 \pm 0.05 \pm 0.03$
	$D^0 \to [K^*(1680)^0 \overline{K}^*(892)^0]_{L=2}$	$1.218 \pm 0.089 \pm 0.354$	$-2.44 \pm 0.08 \pm 0.15$	$0.33 \pm 0.05 \pm 0.00$
	$D^0 \to [K^+ K^-]_{L=0} (\rho - \omega)^0$	$0.195 \pm 0.015 \pm 0.035$	$2.95 \pm 0.08 \pm 0.29$	$0.27 \pm 0.04 \pm 0.03$
NG	$D^0 \to [\phi(1020)f_2(1270)^0]_{L=1}$	$1.388 \pm 0.095 \pm 0.257$	$1.71 \pm 0.06 \pm 0.37$	$0.18 \pm 0.02 \pm 0.07$
i	$D^0 \to [K^*(892)^0 \overline{K}_2^*(1430)^0]_{L=1}$	$1.530 \pm 0.086 \pm 0.131$	$2.01 \pm 0.07 \pm 0.09$	$0.18 \pm 0.02 \pm 0.02$
			Sum of fit fractions	$129.32 \pm 1.09 \pm 2.38$
			χ^2/ndf	9242/8121 = 1.14

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

JHEP 02 (2019) 126

Strange Resonances in $D^{\circ} \rightarrow K^+K^-TT^+TT^-$

K₁(1270)⁺ and K₁(1400)

- It is interesting to notice that in this analysis the contributions of $K^*\pi$ and (ρ-ω)K are more balanced wrt to $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$
- Interference is also much lower in this analysis
- No evidence of K(1460) is found

	Amplitude	$ c_k $	$\arg(c_k)$ [rad]
	$a_1(1260)^+ \to [\phi(1020)\pi^+]_{L=0}$	1 (fixed)	0 (fixed)
	$K_1(1270)^+ \to [K^*(892)^0 \pi^+]_{L=0}$	$0.584 \pm 0.016 \pm 0.040$	$0.63 \pm 0.03 \pm 0.0$
	$K_1(1270)^+ \to [(\rho - \omega)^0 K^+]_{L=0}$	1 (fixed)	0 (fixed)
	$K_1(1270)^+ \to [K^+\pi^-]_{L=0}\pi^+$	$0.612 \pm 0.027 \pm 0.094$	$-1.94 \pm 0.04 \pm 0.04$
	$K_1(1270)^+ \to [K^*(892)^0\pi^+]_{L=2}$	$0.859 \pm 0.044 \pm 0.060$	$-2.53 \pm 0.04 \pm 0.0$
	$K_1(1270)^+ \to [\rho(1450)^0 K^+]_{L=0}$	$0.482 \pm 0.068 \pm 0.187$	$-2.37 \pm 0.10 \pm 0.4$
			Sum of fit fraction
G	$K_1(1400)^+ \to [K^*(892)^0\pi^+]_{L=0}$	1 (fixed)	0 (fixed)
N			
eare			

Strange Spectroscopy in D⁰ decays

STR N

2 20

c^2	
)[°]	
0.9 ± 2.3	
$.1\pm6.0$	
$.1 \pm 1.9$	
$.6 \pm 6.7$	
2.1 ± 5.7	

UNIVERS

Strange Spectroscopy in B decays

Charmonium Decays

- Multibody B decays offer a large spectrum of resonant states, but their Dalitz plots are typically more populated at the borders
- A circumscription of the phase space is possible by studying charmonium resonances, which are abundantly produced in the process B⁺→(cc̄)K⁺
- Charmonium in turn decays to light hadrons (π ,K) and provides a favourable ground for studying strange mesons resonances • These studies are also conducted by other experiments

Strange Spectroscopy in B decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

$B^+ \longrightarrow K^0_s K^+ K^\pm \pi \mp Decays$

Lots of Physics

- Branching fractions of $B^+ \rightarrow (c\bar{c})K^+$ decays (not covered in this talk)
- Amplitude analysis of charmonium resonances

Sample

- Full LHCb dataset (2011-2018): 9/fb
- KS candidates reconstructed when decaying inside (LL) and outside (DD) the VELO

2:20

Strange Spectroscopy in B decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

$B^+ \longrightarrow K^0_s K^- \pi^+ K^+ and B^+ \longrightarrow K^0_s K^+ \pi^- K^+$

Charmonium with Good Purity

2:20

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

PHYS. REV. D108 032010 (2023)

Selection of Charmonium Resonances

Strange Spectroscopy in B decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

PHYS. REV. D108 032010 (2023)

Dalitz Plot of Charmonium Resonances

Strange Spectroscopy in B decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

PHYS. REV. D108 032010 (2023)

Dalitz Plot Analysis of $n_c \rightarrow K^{\circ}_{s} K \pi$ Decays

2D Dalitz

- Approximately 15k signal candidates per channel
- $m^{2}(K^{0}\pi)$ vs. $m^{2}(K\pi)$
- Efficiency parametrised as function of $m^2(K^0\pi)$ and $\cos\theta_{\pi}$
- Two analyses: Quasi Model Independent and Isobar to gain insights of the $K\pi$ S-wave

QMI: amplitude and phase of S-wave fitted at equally spaced intervals of 50 MeV

$$A_{j} = \frac{1}{\sqrt{2}} \left(a_{j}^{K\pi} e^{i\varphi_{j}^{K\pi}} + a_{j}^{K^{0}\pi} e^{i\varphi_{j}^{K^{0}\pi}} \right), a_{j}^{K\pi} = a_{j}^{K^{0}\pi} \text{ and } \varphi_{j}^{K\pi} = \varphi_{j}^{K^{0}\pi}$$

Isobar: Fit data with superposition of known and poorly known resonances

Strange Spectroscopy in B decays

PHYS. REV. D108 032010 (2023)

Quasi Model Independent KT S-wave Fit

Final state	Fraction [%]	Phase [rad]
	$B^+ \to K^0_{\rm S} K^+ K^- \pi^+$	
$(K\pi)_S K$	$120.6 \pm 2.4 \pm 5.4$	0.
$a_0(1450)\pi$	$2.4\pm0.4\pm0.8$	$2.48\pm0.07\pm0.07\pm0.001$
$K_{2}^{*}(1430)K$	$16.6\pm0.8\pm0.9$	$4.31\pm0.03\pm0.03\pm0.01$
$a_2(1320)\pi$	$0.7\pm0.2\pm0.5$	$4.18\pm0.10\pm0$
$a_0(980)\pi$	$11.3\pm0.6\pm0.9$	$-2.93 \pm 0.03 \pm 0.03$
$a_0(1700)\pi$	$1.5\pm0.2\pm0.2$	$2.00\pm0.08\pm0$
$K_{2}^{*}(1980)K$	$2.8\pm0.3\pm1.0$	$-0.08 \pm 0.07 \pm 0.07$
$a_2(1750)\pi$	$0.2\pm0.1\pm0.1$	$-3.56 \pm 0.20 \pm 0.01$
Sum	$156.1 \pm 2.7 \pm 11.4$	
$\chi^2/\mathrm{ndf} = 1706/(1597 - 17) = 1.0$	08	
	$B^+ \to K^0_{\rm S} K^+ K^+ \pi^-$	
$(K\pi)_S K$	$106.0 \pm 2.8 \pm 8.5$	0.
$a_0(1450)\pi$	$0.8\pm0.3\pm0.4$	$1.64\pm0.14\pm0.14\pm0.00$
$K_{2}^{*}(1430)K$	$17.8\pm0.9\pm1.0$	$4.32\pm0.03\pm0$
$a_2(1320)\pi$	$0.7\pm0.2\pm0.5$	$4.22\pm0.11\pm0.011\pm0.00$
$a_0(980)\pi$	$9.7\pm0.6\pm0.3$	$-3.02 \pm 0.04 \pm 0.04$
$a_0(1700)\pi$	$0.8\pm0.2\pm0.2$	$2.10\pm0.11\pm0.00$
$K_{2}^{*}(1980)K$	$6.3\pm0.6\pm1.9$	$0.13\pm0.05\pm0.05\pm0.005\pm0.005$
$a_2(1750)\pi$	$0.2\pm0.2\pm0.3$	$-3.87 \pm 0.22 \pm 0.22$
Sum	$143.7 \pm 2.9 \pm 8.8$	
$\chi^2/\mathrm{ndf} = 1686/(1589 - 17) = 1.0$)7	
	$B \to K^0_{\rm S} K K \pi$	
$(K\pi)_S K$	$114.4 \pm 1.8 \pm 4.6$	0.
$a_0(1450)\pi$	$1.4\pm0.2\pm0.4$	$2.31\pm0.06\pm$
$K_{2}^{*}(1430)K$	$17.1\pm0.6\pm0.7$	$4.32\pm0.02\pm0$
$a_2(1320)\pi$	$0.7\pm0.1\pm0.4$	$4.20\pm0.08\pm0$
$a_0(980)\pi$	$10.5\pm0.4\pm0.4$	$-2.97 \pm 0.02 \pm 0.02$
$a_0(1700)\pi$	$1.0\pm0.1\pm0.1$	$2.04\pm0.06\pm$
$K_{2}^{*}(1980)K$	$3.5\pm0.3\pm0.9$	$0.06\pm0.04\pm0.04$
$a_2(1750)\pi$	$0.2\pm0.1\pm0.1$	$-3.69 \pm 0.15 \pm$
Sum	$148.8 \pm 2.0 \pm 4.8$	

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

PHYS. REV. D108 032010 (2023)

UNIVERSI BICO

Quasi Model Independent Kn S-wave Fit

Strange Spectroscopy in B decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

PHYS. REV. D108 032010 (2023)

Isobar Model Fit

к(2600)

• A large S-wave amplitude is required for the model to fit

Low mass **K**/K*₀(700)

Tested, non-significant improvement to the fit

Poorly known resonances

- K*₂(1980) consistent with zero
- K^{*}₀(1430), K^{*}₀(1950), a₀(1700)

Resonance	Mass [MeV]	$\Gamma [MeV]$	$\Delta(2)$
$K_0^*(1430)$	$1493 \pm 4 \pm 7$	$215 \pm 7 \pm 4$	
$K_0^*(1950)$	$1980 \pm 14 \pm 19$	$229\pm26\pm16$	
$a_0(1700)$	$1736 \pm 10 \pm 12$	$134 \pm 17 \pm 61$	
$\kappa(2600)$	$2662\pm59\pm201$	$480\pm47\pm72$	

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Isobar Model Fit

Einel state	Encotion [07]	Dhaga [nad]
Final state	Fraction [%]	Phase [rad]
	$B^+ \to K^0_{\rm S} K^+ K^- \pi^+$	
$K_0^*(1430)K$	$35.1 \pm 1.3 \pm 2.9$	0.
$a_0(980)\pi$	$5.6\pm0.8\pm1.6$	$-3.39\pm0.08\pm$
$K_{2}^{*}(1430)K$	$15.4\pm1.0\pm1.1$	$3.53\pm0.03\pm$
$a_2(1320)\pi$	$1.1\pm0.2\pm0.3$	$-2.90\pm0.11\pm$
$K_0^*(1950)K$	$3.9\pm0.4\pm0.3$	$-0.46\pm0.06\pm$
$a_0(1700)\pi$	$1.7\pm0.3\pm0.4$	$1.00\pm0.08\pm$
$a_0(1450)\pi$	$3.4\pm0.5\pm0.8$	$-4.78\pm0.08\pm$
$a_2(1750)\pi$	$0.3\pm0.1\pm0.1$	$2.43\pm0.17\pm$
$\kappa(2600)K$	$63.9 \pm 3.4 \pm 8.1$	$-0.42\pm0.05\pm$
Sum	$130.5 \pm 4.0 \pm 8.9$	
$\chi^2/\text{ndf} = \frac{1798}{(1589 - 19)} = 1.15$		
	$B^+ \to K^0_{\rm S} K^+ K^+ \pi^-$	
$K_{0}^{*}(1430)K$	$32.0 \pm 1.2 \pm 2.8$	0.
$a_0(980)\pi$	$4.9 \pm 0.6 \pm 1.0$	$-3.37 \pm 0.08 \pm$
$K_{2}^{*}(1430)K$	$13.8 \pm 1.0 \pm 1.2$	$3.56 \pm 0.03 \pm$
$a_2(1320)\pi$	$1.2 \pm 0.2 \pm 0.3$	$-2.82 \pm 0.11 \pm$
$K_0^*(1950)K$	$3.4 \pm 0.4 \pm 0.3$	$-0.42 \pm 0.06 \pm$
$a_0(1700)\pi$	$0.7 \pm 0.2 \pm 0.2$	$1.18 \pm 0.11 \pm$
$a_0(1450)\pi$	$2.0 \pm 0.4 \pm 0.7$	$-4.86 \pm 0.10 \pm$
$a_2(1750)\pi$	$0.3 \pm 0.1 \pm 0.1$	$2.24 \pm 0.18 \pm$
$\kappa(2600)K$	$59.8 \pm 3.4 \pm 7.3$	$-0.32 \pm 0.05 \pm$
Sum	1181 + 27 + 80	
$\chi^2/\text{ndf} = \frac{1738}{(1584 - 21)} = 1.11$	$110.1 \pm 2.1 \pm 0.0$	
	$B \to K^0_{\rm S} K K \pi$	
$K_0^*(1430)K$	$33.4 \pm 0.9 \pm 2.0$	0.
$a_0(980)\pi$	$5.1 \pm 0.5 \pm 0.8$	$-3.38 \pm 0.06 \pm$
$K_{2}^{*}(1430)K$	$14.6 \pm 0.7 \pm 0.8$	$3.54 \pm 0.02 \pm$
$a_2(1320)\pi$	$1.1 \pm 0.1 \pm 0.2$	$-2.89 \pm 0.08 \pm$
$K_0^*(1950)K$	$3.7 \pm 0.3 \pm 0.2$	$-0.44 \pm 0.04 \pm$
$a_0(1700)\pi$	$1.1 \pm 0.2 \pm 0.2$	$1.05 \pm 0.06 \pm$
$a_0(1450)\pi$	$2.6 \pm 0.3 \pm 0.5$	$-4.82 \pm 0.06 \pm$
$a_2(1750)\pi$	$0.3 \pm 0.1 \pm 0.1$	$2.33 \pm 0.12 \pm$
$\kappa(2600)K$	$61.8 \pm 2.4 \pm 5.4$	$-0.37 \pm 0.03 \pm$
Sum	123.7 + 2.7 + 4.7	
	TEQ.1 T E.1 T I.1	

Strange Spectroscopy in B decays

PHYS. REV. D108 032010 (2023)

Amplitudes Interference Candidates/(20 MeV) Candidates/(20 MeV) - $K_0^*(1430)/a_0(980)$ (a) (b) ••• $a_0(980)/\kappa(2600)$ LHCb — Total $- K_2^*(1430)/\kappa(2600)$ 9 fb⁻¹ = 0.13400 $\begin{array}{l} - \ a_2(1320)/\kappa(2600) \\ - \ a_0(1450)/\kappa(2600) \end{array}$ --- $K_0(1430)$ 400 = 0.10 $K_{2}(1430)$ - · - $K_0^*(1950)$ 0.26 $\kappa(2600)$ $-\cdot -$ 200 = 0.63200 = 0.17= 0.17. = 0.17= 0.14 $2 2.5 m(K^{-}\pi^{+})$ [GeV] $2 2.5 m(K^{-}\pi^{+})$ [GeV] 1.5 1.5 1 Candidates/(20 MeV) Candidates/(20 MeV) (c) (d) LHCb = 0.11 $9 \, {\rm fb}^{-1}$ 400 400 0.11 = 0.240.64 200 = 0.28200 = 0.22****** = 0.17= 0.12 $2 m(K_{s}^{0}\pi^{+})$ [GeV] $2 m(K_{s}^{0}\pi^{+})$ [GeV] 1.5 1.5 - 1 - 1 Candidates/(20 MeV) Candidates/(20 MeV) LHCb (e) 300 (f) $\begin{array}{c} \hline & \text{Total} \\ \hline & a_0(980) \\ \hline & a_2(1310) \\ \hline & a_0(1700) \\ \hline & a_0(1450) \\ \hline \end{array}$ 9 fb $^{-1}$ 0.08200 : 0.07200= 0.180.45= 0.15-----100= 0.130.110.09 $2.5 m(K_{\rm S}^0 K^-)$ [GeV] $2.5 m(K_{\rm S}^0 K^-)$ [GeV] 1.5 1.5 2 1

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Dalitz Plot Analysis of $\eta_c(2S) \rightarrow K^{\circ}_{s}K\pi$ Decays

Much Lower Data

- Approximately 2800 decays in $B^+ \rightarrow K^0_s K^+ K^- \pi^+$
- Using the same model of η_c (Isobar only)
- Very large interference

Strange Spectroscopy in B decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

PHYS. REV. D108 032010 (2023)

Final state	Fraction [%]	Phase [rad]
$K_0^*(1430)K$	$25.5 \pm 3.3 \pm 4.1$	0.
$K_{2}^{*}(1430)K$	$24.5 \pm 3.3 \pm 4.4$	$3.10 \pm 0.11 \pm 0.08$
$K_0^*(1950)K$	$3.7\pm1.3\pm1.1$	$-0.82 \pm 0.17 \pm 0.24$
$a_0(1700)^-\pi^+$	$1.7\pm1.1\pm0.5$	$1.22 \pm 0.32 \pm 0.90$
$a_0(1450)^-\pi^+$	$7.8\pm1.9\pm1.0$	$1.86 \pm 0.14 \pm 0.56$
$a_2(1750)^-\pi^+$	$4.9\pm1.4\pm1.1$	$-1.75 \pm 0.15 \pm 0.39$
$\kappa(2600)K$	$124.2 \pm 9.0 \pm 7.7$	$-0.91 \pm 0.10 \pm 0.08$
Sum	$192.3 \pm 10.9 \pm 10.0$	
$\chi^2/\text{ndf} = 578/(591-13)=1.00$		

Dalitz Plot Analysis of $\chi_{c1} \rightarrow K^{\circ}_{s} K\pi$ Decays

Candidates/(40 MeV

60

40

20

50

High Background

- Dalitz plot not feasible in this case
- Simplified approach: fit only the m(Kπ) and m(K⁰π) distributions
- **Efficiency corrected**

Decay mode	Fraction	Branching fraction $(\times 10^{-3})$	$\sum_{i=1}^{n}$
$\mathcal{B}(\chi_{c1} \to K^*(892)^0 \bar{K}^0)$	$0.099 \pm 0.012 \pm 0.004$	$1.04 \pm 0.13 \pm 0.04 \pm 0.09$	Me
$\mathcal{B}(\chi_{c1} \to K_2^*(1430)^0 \bar{K}^0)$	$0.111 \pm 0.015 \pm 0.005$	$1.17 \pm 0.16 \pm 0.05 \pm 0.10$	40
$\mathcal{B}(\chi_{c1} \to K^*(892)^+K^-)$	$0.112 \pm 0.016 \pm 0.013$	$1.18 \pm 0.17 \pm 0.14 \pm 0.10$	es/(
$\mathcal{B}(\chi_{c1} \to K_2^*(1430)^+ K^-)$	$0.143 \pm 0.018 \pm 0.006$	$1.61 \pm 0.19 \pm 0.19 \pm 0.14$	dat
			ndi
			Ca

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

PHYS. REV. D108 032010 (2023)

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Summary

Strange Hadrons Spectroscopy at LHCb

- A byproduct of amplitude analyses of B and D decays
- (Relatively) Large yields with high purity
- Many interesting results can be extracted K^{*}₀(1950) established
- KK and Kπ S-waves can be studied

New parametrisation of the K π S-wave including K^{*}₀(1430), K^{*}₀(1950), and κ (2600)

33

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Tested With PseudoExperiments

- Size of Integration Sample (Resampling)
- **Background description in WS fit**
- **Flavour Misidentification**
- **Detection Asymmetry**
- **Alternative Models**

Tested With Alternative Fits

- **Background Description**
- **Selection Efficiency**
- **Resonance Shapes**

Tested With Multiple Fits of Resampled Data

- STRONG Background Description
 - Uncertainties of the Fixed Parameters

INFN

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Systematic Uncertainties $D^{\circ} \rightarrow K^+K^-\pi^+\pi^-$

Tested With PseudoExperiments

- Fit Bias
- **Background description**
- Flavour Misidentification
- **Detection Asymmetry**
- **Alternative Models**

Tested With Alternative Fits

- **Background Description**
- **Selection Efficiency**
- **Resonance Shapes**

Tested With Multiple Fits of Resampled Data

- STRONG
 Background Description
 Uncertainties of the Fixed
 - Uncertainties of the Fixed Parameters

INFN

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Systematic Uncertainties $\eta_c \rightarrow K^{\circ}_s K \pi$

Sources of Uncertainties

- **Efficiency Correction** $\epsilon(m(K_S^0K), \cos\theta_{\pi}) \rightarrow \epsilon_1(m(K_S^0K))\epsilon_2(\cos\theta_{\pi}))$
- Trigger Selection TOS vs. No-TOS
- Uncertainty on Signal Purity ±5% change in BDT selection
- Radius of the Blatt-Weisskopf factor (1.5/GeV) Varied in $(0.5 \div 2.5)/\text{GeV}$ range
- **Background Model** Random variations of background model

Negligible

Fit Bias

• Sidebands

STR[®]NG 2 20 INFN

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Amp	olitudes

Phases

Final state	Eff	Trig	Pur	r	Back	Tot	Eff	Trig	Pur	r	Bac
$(K\pi)_S K$	3.27	0.89	1.03	4.01	0.48	5.37	-	-	-	-	-
$a_0(1450)\pi$	0.65	0.29	0.24	0.16	0.06	0.77	0.04	0.07	0.03	0.00	0.0
$K_{2}^{*}(1430)K$	0.02	0.17	0.04	0.86	0.48	1.00	0.08	0.06	0.03	0.05	0.0
$a_2(1320)\pi$	0.38	0.10	0.34	0.04	0.08	0.53	0.21	0.08	0.14	0.05	0.0
$a_0(980)\pi$	0.70	0.05	0.47	0.12	0.34	0.92	0.01	0.02	0.02	0.00	0.0
$a_0(1700)\pi$	0.12	0.05	0.05	0.08	0.01	0.16	0.10	0.08	0.02	0.00	0.0
$K_{2}^{*}(1980)K$	0.04	0.08	0.19	0.96	0.16	1.00	0.10	0.06	0.04	0.08	0.0
$a_2(1750)\pi$	0.05	0.01	0.05	0.03	0.03	0.09	0.04	0.14	0.05	0.11	0.0
Final state	Eff	Trig	Pur	r	Back	Tot	Eff	Trig	Pur	r	Bac

Final state	Eff	Trig	Pur	r	Back	Tot	Eff	Trig	Pur	r	Bac
$(K\pi)_S K$	6.06	2.94	2.80	4.39	0.20	8.52	-	-	-	-	-
$a_0(1450)\pi$	0.30	0.12	0.24	0.14	0.06	0.43	0.31	0.35	0.08	0.01	0.0
$K_{2}^{*}(1430)K$	0.32	0.08	0.30	0.88	0.54	1.13	0.09	0.07	0.04	0.06	0.0
$a_2(1320)\pi$	0.32	0.09	0.30	0.08	0.11	0.47	0.27	0.13	0.19	0.05	0.8
$a_0(980)\pi$	0.01	0.17	0.02	0.22	0.26	0.46	0.02	0.02	0.03	0.02	0.0
$a_0(1700)\pi$	0.12	0.00	0.08	0.08	0.01	0.17	0.18	0.15	0.03	0.00	0.0
$K_{2}^{*}(1980)K$	0.46	0.11	0.43	1.77	0.22	1.89	0.04	0.01	0.06	0.05	0.0
$a_2(1750)\pi$	0.21	0.10	0.13	0.02	0.03	0.27	0.09	0.02	0.06	0.11	0.1

Systematic Uncertainties $n_c(2S) \rightarrow K_s K\pi$

Sources of Uncertainties

- **Efficiency Correction** Use 2D-binned map
- Trigger Selection TOS vs. No-TOS
- **Uncertainty on Signal Purity** ±5% change in BDT selection
- Radius of the Blatt-Weisskopf factor (1.5/GeV) Varied in $(0.5 \div 2.5)/\text{GeV}$ range

Background Model Random variations of background model

Negligible

- Fit Bias
- Sidebands

Amplitudes

Phases

38

Final state	Pur	Par	r	Back	Eff	Tot	Pur	Par	r	Back	Eff
$K_0^*(1430)K$	1.92	1.25	0.17	0.91	3.26	4.1	-	-	-	-	-
$K_{2}^{*}(1430)K$	2.47	0.43	1.24	0.86	3.30	4.4	0.06	0.02	0.04	0.02	0.0
$K_0^*(1950)K$	0.60	0.22	0.37	0.18	0.74	1.1	0.03	0.09	0.08	0.21	0.0
$a_0(1700)^-\pi^+$	0.32	0.05	0.29	0.13	0.02	0.45	0.18	0.05	0.11	0.87	0.12
$a_0(1450)^-\pi^+$	0.94	0.04	0.19	0.32	0.19	1.03	0.10	0.04	0.09	0.53	0.09
$a_2(1750)^-\pi^+$	0.53	0.15	0.42	0.11	0.79	1.05	0.03	0.04	0.08	0.38	0.0
$\kappa(2600)K$	4.33	3.28	4.97	0.01	2.40	7.74	0.04	0.05	0.04	0.02	0.0

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Systematic Uncertainties $\chi_{c1} \rightarrow K^{\circ}_{s} K \pi$

Sources of Uncertainties

- Decay Modes Difference between separate results
- **Uncertainty on Signal Purity** ±5% change in BDT selection
- Radius of the Blatt-Weisskopf factor (1.5/GeV) Varied in $(0.5 \div 2.5)/\text{GeV}$ range

Spares

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Amplitude Analysis of 4-Body D^o Decays

Software: <u>AmpGen</u>

- C++ and ROOT based with multithreading (OpenMP)
- Isobar model
 - coherent sum of amplitudes
 - polarised sum of amplitudes for particles carrying spin
 - incoherent sum of amplitudes for background description

• Spin Formalism

Covariant Tensors (Rarita-Schwinger)

Canonical helicity formalism

Quasiparticles

Fictional decaying particles to describe for example S-wave with K-matrix

Strange Spectroscopy in D⁰ decays

Maurizio Martinelli - Strange hadrons spectroscopy at LHCb | 19.03.2024

Modelling 3-Body Resonances

3-Body Running Width

The width of 2-body resonances is typically given by

$$\Gamma(s) = \frac{\Gamma_0 q m_0}{q_0 \sqrt{s}} \left(\frac{q}{q_0}\right)^{2L} B_L(q, q_0)^2$$

- In 3-body resonances one must account for the dynamics of the intermediate decay process
- We decided to express it in terms of the spin-averaged matrix element of the decay integrated over the phase space of the three-particle final state

$$\Gamma(s) \propto \frac{1}{s} \int ds_{ab} ds_{bc} \left| \mathcal{M}_{R \to abc} \right|^2, \Gamma(m_0^2) =$$

3-Body Amplitude

$$\mathcal{T}(s) = \frac{\sqrt{k}F(q)}{m_0^2 - s - im_0\Gamma(s)}, F(q) = e^{-r^2q^2}$$

STRONG

2 20

Strange Spectroscopy in D⁰ decays

 $= \Gamma_0$

 $^{2}/2$

