

Meson Spectroscopy at COMPASS

Philipp Haas for the COMPASS Collaboration

19.03.2024 - PAW'24

• Mesons in the Constituent Quark Model: $|q\bar{q}\rangle$ states

Motivation

• Mesons in the Constituent Quark Model: $|q\bar{q}\rangle$ states

• Many predicted $|q\bar{q}\rangle$ states unobserved/need confirmation

Motivation

- Mesons in the Constituent Quark Model: $|q\bar{q}\rangle$ states
- Many predicted $|q\bar{q}\rangle$ states unobserved/need confirmation
- QCD allows meson configurations beyond $|q\bar{q}\rangle$ so-called exotics

Motivation

- Mesons in the Constituent Quark Model: $|q\bar{q}\rangle$ states
- Many predicted $|q\bar{q}\rangle$ states unobserved/need confirmation
- QCD allows meson configurations beyond $|q\bar{q}\rangle$ - so-called exotics

- Meson spectroscopy:
- \Rightarrow Understand non-perturbative QCD
- \Rightarrow Input to test SM predictions with experimental data

Experimental Setup

- Located at CERN SPS
- 190 GeV/c negative hadron beam
- Non-strange light-meson spectroscopy: $\pi^{-}p$ scattering

Non-Strange Light-Meson Spectroscopy at COMPASS

- Diffractive scattering of high-energy pion beam
- Excited non-strange meson resonance X^-
- Decay to N hadron final state

Non-Strange Light-Meson Spectroscopy at COMPASS

- Diffractive scattering of high-energy pion beam
- Excited non-strange meson resonance X^-
- Decay to N hadron final state

Analyzed channels:

- $\pi^{-}\pi^{-}\pi^{+}/\pi^{-}\pi^{0}\pi^{0}$
- $\eta\pi^-/\eta'\pi^-$
- $\omega\pi^-\pi^0$

• Excited meson X^- with quantum numbers 0^-0^+

- Excited meson X^- with quantum numbers 0^-0^+
- Isobar model: $X^- \rightarrow \omega \rho(770)$
 - Unstable intermediate state/isobar $\rho(770)$

- Excited meson X^- with quantum numbers 0^-0^+
- Isobar model: $X^- \rightarrow \omega \rho(770)$
 - Unstable intermediate state/isobar $\rho(770)$
 - LS = P1 coupling between ω and $\rho(770)$

- Excited meson X^- with quantum numbers 0^-0^+
- Isobar model: $X^- \rightarrow \omega \rho(770)$
 - Unstable intermediate state/isobar $\rho(770)$
 - LS = P1 coupling between ω and $\rho(770)$
- $\rho(770) \rightarrow \pi^- \pi^0$
 - Second ls = P1 coupling
- $i = 0^{-}0^{+}[\rho(770)P] \omega P1$

- Excited meson X^- with quantum numbers $J^P M^{\epsilon}$
- Isobar model: $X^- \rightarrow \omega \xi^-$
 - Unstable intermediate state/isobar ξ^-
 - LS coupling between ω and ξ^-
- $\xi^- \rightarrow \pi^- \pi^0$
 - Second *ls* coupling
- $i = J^P M^{\epsilon} [\xi l] \omega LS$

Partial-Wave Decomposition

Model measured intensity and angular distributions

by a coherent sum over different partial waves i = J^PM^ε [ξl]ωLS in narrow (m_X, t') cells without assumptions about resonance content of X⁻ in partial waves π⁻ X⁻ LS x⁻ LS x⁻ x⁻

Philipp Haas – PAW'24

Spin-exotic 1^{-+} at COMPASS

- Non-Strange light mesons: certain J^{PC} not possible for $|q\bar{q}\rangle$ spin-exotic
- Lattice QCD and models: lightest hybrid meson is spin-exotic 1^{-+} state

Spin-exotic 1^{-+} at COMPASS $\pi^{-}\pi^{-}\pi^{+}$ $\eta'\pi^ \eta\pi^ \pi_1(1600)?$ $\pi_1(1400)?$ $1^{-+}1^{+}\rho(770) \pi P$ $\times 10^3$ $0.449 < t' < 0.724 (\text{GeV}/c)^2$ Model curve Coupled-channel analysis of COMPASS data by JPAC: Resonances Intensity / (20 MeV/ c^2) Nonres. comp. One pole is sufficient to describe both partial waves 3.0<mark>⊱10³</mark> ηπ *P*-wave n'π *P*-wave 2.5 Events/40 MeV 1.2 1.0 Events/40 MeV 0.5 1.5 0.5 2 2.5 m_{π} [GeV/ c^2] 0.0 0.8 2.0 0.8 1.2 1.4 1.6 2.0 1.0 1.2 1.6 1.8 1.0 1.8 1.4 √s (GeV) √s (GeV) **Resonance parameters:** Pole parameters: $m_0 \,({\rm MeV}/c^2) \qquad \Gamma \,({\rm MeV}/c^2)$ Γ (MeV/ c^2) m_0 (MeV/ c^2) 1600^{+110}_{-60} 580^{+100}_{-230} $1564 \pm 24 \pm 86$ 492 + 54 + 102M. Aghasyan et al. (COMPASS) A. Rodas et al. (JPAC), Phys. Rev. Lett. 122, 042002 [2019] Phys. Rev. D 98, 092003 [2018] Extended Analysis incl. Crystal Barrel: B. Kopf et al., Eur. Phys. J.C 81, 1056 [2021] Philipp Haas – PAW'24

Spin-exotic 1^{-+} at COMPASS

COMPASS $\times 10^{3}$ Analyzed channels:

Non-Strange Light-Meson Spectroscopy at

- $\pi^{-}\pi^{-}\pi^{+}/\pi^{-}\pi^{0}\pi^{0}$
- ηπ⁻/η'π⁻
 ωπ⁻π⁰

\Rightarrow Non-strange light-meson spectrum well studied by COMPASS

Strange-Meson Spectrum

- Many states predicted by the Constituent Quark Model not observed
- Most experimental results published 30+ years ago
- No established exotic strange meson (except $K_0^*(700)/\kappa$)

Experimental Setup

- Located at CERN SPS
- 190 GeV/c negative hadron beam
- Strange-meson spectroscopy
 K⁻p scattering

Experimental Setup – Particle ID

- Located at CERN SPS
- 190 GeV/c negative hadron beam
- Strange-meson spectroscopy K⁻p scatteri CEDARs * beam PID RICH COMPASS * final-state PID Nucl. Instrum. Methods. A 779 [2015] 69 30 m

Strange-Meson Spectroscopy in $K^-\pi^-\pi^+$

- World's largest $K^-\pi^-\pi^+$ data set
 - 720k diffractive events
- Well-known states are dominant
 - \Rightarrow Less well-known states not visible in $m_{K\pi\pi}$ spectrum
 - \Rightarrow Partial-wave analysis reveals rich spectrum

Philipp Haas – PAW'24

Limited final state PID of $K^-\pi^-\pi^+$

- Significant backgrounds from $\pi^{-}\pi^{-}\pi^{+}$, $K^{-}K^{-}K^{+}$,...
 - \Rightarrow Partial-wave model includes background contributions
- Final state PID only works for $p \lesssim 50~{\rm GeV}/c$
 - \Rightarrow Artifacts in certain partial waves for $m_{K\pi\pi} \lesssim 1.5 \text{ GeV}/c^2$

• Model m_X dependence of partial waves as sum of contributions:

- Model m_X dependence of partial waves as sum of contributions:
 - Breit-Wigner amplitudes of $K\pi\pi$ resonances

- Model m_X dependence of partial waves as sum of contributions:
 - Breit-Wigner amplitudes of $K\pi\pi$ resonances
 - Coherent non-resonant background

- Model m_X dependence of partial waves as sum of contributions:
 - Breit-Wigner amplitudes of $K\pi\pi$ resonances
 - Coherent non-resonant background
 - Incoherent $\pi^-\pi^-\pi^+$ background modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis

- Model m_X dependence of partial waves as sum of contributions:
 - Breit-Wigner amplitudes of $K\pi\pi$ resonances
 - Coherent non-resonant background
 - Incoherent $\pi^-\pi^-\pi^+$ background modeled by COMPASS $\pi^-\pi^-\pi^+$ analysis
 - Incoherent effective background for other background processes

Strange Mesons with $J^P = 0^-$

- K(1460) peak at about 1.4 GeV/ c^2
 - Established state
 - Increased background below 1.5 GeV/ c^2 \Rightarrow Fixed Breit-Wigner resonance
- K(1630) peak at about 1.7 GeV/ c^2
 - 8.3σ statistical significance
- K(1830) peak at about 2.0 GeV/ c^2
 - 5.4 σ statistical significance

Strange Mesons with $J^P = 0^-$

- Quark model predicts 2 exited 0^- states
- Indications for 3 states in a single analysis
 - \Rightarrow Supernumerary state K(1630)
 - \Rightarrow Possible candidate for exotic strange meson

Strange Mesons

Strange Mesons

• Most comprehensive analysis of $K^-\pi^-\pi^+$

• 11 states extracted from COMPASS data

Strange Mesons

• Most comprehensive analysis of $K^-\pi^-\pi^+$

• 11 states extracted from COMPASS data

 \Rightarrow Strange light-meson spectrum is studied by COMPASS

Strange Mesons

• Most comprehensive analysis of $K^-\pi^-\pi^+$

• 11 states extracted from COMPASS data

⇒Strange light-meson spectrum is studied by COMPASS But limited due to final state PID

Conclusion & Outlook

- COMPASS contributes to the knowledge of the light meson spectrum by studying many different final states in great detail
 - Exotic $\pi_1(1600)$ observed in multiple final states
- Most comprehensive analysis of the $K^-\pi^-\pi^+$ final state
 - Measured resonance parameters of 11 states
 - Exotic strange-meson candidate: Supernumerary state in $J^P = 0^-$
- Active analysis of other final states: $f_1\pi^-$, K_SK^- , $K_SK_S\pi^-$, $K_S\pi^-$, $\Lambda \bar{p}$

Conclusion & Outlook

- COMPASS contributes to the knowledge of the light meson spectrum by studying many different final states in great detail
 - Exotic $\pi_1(1600)$ observed in multiple final states
- Most comprehensive analysis of the $K^-\pi^-\pi^+$ final state
 - Measured resonance parameters of 11 states
 - Exotic strange-meson candidate: Supernumerary state in $J^P = 0^-$
- Active analysis of other final states: $f_1\pi^-$, K_SK^- , $K_SK_S\pi^-$, $K_S\pi^-$, $\Lambda \bar{p}$
- AMBER phase-II: Strange-meson spectroscopy

⇒Promising experiment to probe strange-meson spectrum with even higher precision

B. Seitz: Status of the AMBER Phase-2 Proposal Preparation (Tue, 14:30)

Backup

Limited final state PID of $K^-\pi^-\pi^+$

• Significant backgrounds from $\pi^{-}\pi^{-}\pi^{+}$, $K^{-}K^{-}K^{+}$,...

⇒Partial-wave model includes background contributions

- Limited acceptance
 - \Rightarrow Artifacts in certain partial waves for $m_{K\pi\pi} \lesssim 1.5 \text{ GeV}$

