

Primakoff Reactions and Prompt Photons Production with AMBER

A. Guskov, JINR

19.3.2024

aguskov@jinr.int

Hadronic matter

Existence of nuclear matter and its self-organizatioin

Rigidity of nuclear matter Structure of nuclear matter

Polarizabilities: from medium to particles

Electric

Polarizabilities:

$$\vec{P} = \alpha_X \vec{E}$$
$$\vec{\mu} = \beta_X \vec{H}$$

Magnetic

Compton amplitude: $A(\gamma X \to \gamma X) =$ $(-\frac{\alpha}{m}\delta_{o\pm} + \frac{\alpha_X}{\omega_1\omega_2})\hat{e}_1 \cdot \hat{e}_2 +$ $+\beta_X\omega_1\omega_2(\hat{e}_1 \times \hat{q}_1)(\hat{e}_2 \times \hat{q}_2) + \dots$

$H = \dots - (a_X E^2 + \beta_X H^2)/2$

The electric and magnetic polarizabilities of a hadron are the quantities characterizing the rigidity of QCD system

Polarizability of hadrons

	$\alpha_{\rm X}, 10^{-4} {\rm ~fm^3}$	$\beta_{\rm X}, 10^{-4} {\rm ~fm^3}$	Comments	Chiral theory	$\alpha_{\rm X}/r^{3}$ X, 10-3
p	11.2±0.4	2.5±0.4		α =10.8 , β =4.0 (±0.7)	1.9
n	11.8±1.1	3.7±1.2			
π^{\pm}	2.0±0.9	-2.0∓0.9	assuming $\alpha = -\beta$	α =2.9 , β =2.7 (±0.5)	1
π^0	0±2	1∓2		$\alpha = -0.4$, $\beta = 1.5 (\pm 0.3)$	
K±	<200		from kaonic atom spectra	$\alpha = -\beta = 0.6$	0.34
		4 500			

Magnetic moment of proton induced by atomic magnetic fields is $\sim 10^{-14} \ \mu_N$

Primakoff reactions

 $\sigma_{x\gamma} \sim 1/m_x^2$

 $\sigma_{xy}(\omega, Q^2) \rightarrow \sigma_{xy}(\omega, 0)$

 $d\sigma_{xZ} = \int n_y(\omega) d\sigma_{xy}(\omega) d\omega$ $n_{\gamma}(\omega) \sim \frac{Z^2 \alpha}{\omega} ln \frac{E}{\omega}$

density of equivalent photons

Pion polarizability at COMPASS

$$R_X = \frac{\sigma}{\sigma_{p.l.}} = 1 - \frac{3}{2} \times \frac{x_\gamma^2}{1 - x_\gamma} \times \frac{m_X^3}{\alpha} \times \alpha_X$$

Source of uncertainty	Estimated magnitude $[10^{-4}\mathrm{fm^3}]$
Determination of tracking detector efficiency	0.5
Treatment of radiative corrections	0.3
Subtraction of π^0 background	0.2
Strong interaction background	0.2
Pion-electron elastic scattering	0.2
Contribution of muons in the beam	0.05
Quadratic sum	0.7

6

Kaon polarisability via Primakoff scattering

Higher Z for target?

7

օր

0.05

0.15

0.1

0.2

0.25

IQI [GeV/c]

0.3

Expectations

2-nd experimental problem: π⁰ - background

	$a_2(1320)$	$\pi_2(1670)$
This measurement	$(358\pm 6\pm 42)\mathrm{keV}$	$(181 \pm 11 \pm 27) \mathrm{keV} \cdot (0.56 / \mathrm{BR}_{f_2 \pi})$
SELEX [21]	$(284\pm25\pm25)\mathrm{keV}$	
S. Cihangir et al. [24] E.N. May et al. [25]	$(295 \pm 60) \mathrm{keV}$ $(0.46 \pm 0.11) \mathrm{MeV}$	EPJA 50 (2014) 79
VMD model [1]	$(375\pm50)\mathrm{keV}$	
Relativ. Quark model [2]	324 keV	
Cov. Osc. Quark model [3]	235 keV	
Cov. Osc. Quark model [4]	237 keV	2 values: 335 keV and 521 keV

Radiative widths of mesons

Chiral anomaly and Primakoff cross sections near threshold

 $\sigma_{\gamma} \ [\mu b]$

11

 $m_{3\pi}$ [GeV/c²]

Meson PDFs

GRV (1992) set of pion PDFs: Drell-Yan, charmonia and prompt photon production experiments (**E615**, **NA10, WA70, NA24**).

SMRS (1992): basically the same old data.

JAM (2018) set: production of leading neutrons in DIS at HERA (**ZEUS, H1**).

Kaon PDFs: just 700 kaon-induced DY events at NA3

Prompt-photon production

$$data \to \sigma_{inclusive \gamma}(p_T, x_F) \to g_K(x_K)$$

separation of quark/gluon contribution in kaon (K+ vs K–)
pion as a reference!

For $p_{T min} = 3 \ GeV/c$ and $P_{beam} = 190 \ GeV$: $x_{g min} = 0.1$

Observables:

Previous measurements at low \/s

Experiment	Beam and target	\sqrt{s} , GeV	y range	x_T range
E95 (1979)	p; Be	19.4, 23.75	-0.7 - 0.7	0.15 - 0.45
E629 (1983)	p, π^+ ; C	19.4	-0.75 - 0.2	0.22 - 0.52
NA3 (1986)	p, π^+ , π^- ; C	19.4	-0.4 - 1.2	0.26 - 0.62
NA24 (1987)	p, π^+ , π^- ; p	23.75	-0.65 - 0.52	0.23 - 0.59
WA70 (1988)	p, π^+ , π^- ; p	22.96	-0.9 - 1.1	0.35 - 0.61
E706 (1993)	p, π^- ; Be	30.63	-0.7 - 0.7	0.20 - 0.65
E704 (1995)	p; p	19.4	< 0.74	0.26 - 0.39
UA6 (1993,1998)	$ar{p};$ p	24.3	-0.2 - 1.0	0.34 - 0.50

Fixed target measurements

Photons at AMBER

Target: 40 cm of graphite

Expectations

Kaon-induced high-pT π⁰ production

Beam requirements

BEAM	Primakoff	High-pT photons
Beam particle	K-	K+/- , π+/-
Beam momentum	>40 GeV	190 GeV
dP/P	1 %	not critical
Beam intensity	~5e6 kaons s-1	~5e6 kaons s ⁻¹
Beam spot on target	~5x5 mm	~5x5 mm
Beam time request	1 year	1 year
Particle ID by CEDAR	pion suppression ~10 ⁴	pion suppression ~10 ³
TARGET	> Ni ~0.5 X ₀	~ C ~ 2 X ₀

Summary

- AMBER as successor of COMPASS with its three calorimeters is a unique facility for the study of processes with photons in the final state.
- AMBER can perform sophisticated test of low-energy QCD models via kaon-induced Primakoff reactions:
 - first measurement of kaon polarizability
 - update the estimation of radiation width of kaon states
 - chiral anomaly study
 - investigation of Primakoff cross sections dynamics near threshold
- Measurement of the kaon-induced high-pT prompt photon and π⁰ production cross section can provide an important information about gluon content in kaon.