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Alternative	techniques

• MUSE:	low	energy	µ	and	e	beams	of	both	polarities	

• ULQ2	(Tohoku):	very	low	energy	electron	scattering	(Suda	et	al.)	
• COMPASS:	high	energy	µ beams	of	both	polarities	(	x	500	beam	energy	of	MUSE!!) 

– beam	energy	irrelevant..		Q2	is	important	variable	(see	details	later)	

– COMPASS	has	demonstrated	excellent	Q2		resolution	with	Primakoff	reactions		

– Coulomb	peak	from	 	scattering	 		-	 	

– well	performing	spectrometer	and	well	understood	apparatus	

………………

πA π + Z → π + γ + Zrecoil ΔQ2 ≈ 5 × 10−4(GeV/c)2
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Beamline	for	High-Energy	Muon	Beams

• Muon momenta up to 200 GeV/c  - flux up to 107 µ/s  
• PRM: beam momentum of 100 GeV/c and 2 MHz beam rate 

• AMBER as successor at COMPASS location starting 2023 with the first full PRM pilot run in 10/2023 
→ broad physics program: PRM, Drell-Yan, Anti-Proton Cross-Section, use RF separated beams (plan)

M2 beamline
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AMBER

M2 beamline at CERN’s SPS 
North Area of CERN :  M2 beamline provides a unique high-intensity muon beam
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Hadron	Radius	Measurements	with	hadron	Beams

• M2	beam	line	is	also	an	excellent	hadron	beam	line

5

ant
ipro

ton
s

Particle	ID	
• use	2	Beam	CEDARs	
• efficiently	tag	rarest	hadron
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Hadron	Charge	Radii		
Through	Elastic	Hadron-Lepton	Scattering	

at	low	Q2
Protons in hydrogen target (or other stable nuclei): 
Measurement via elastic electron or muon scattering 
Cross section:

Charge radius from the slope of GE

lepton

proton
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Hadron	Charge	Radii		
Through	Elastic	Hadron-Lepton	Scattering	

at	low	Q2
Protons in hydrogen target (or other stable nuclei): 
Measurement via elastic electron or muon scattering 
Cross section:

Charge radius from the slope of GE

For unstable particles, electron scattering can only be realised 
in inverse kinematics

lepton

proton

electron

meson

Stephan Paul

lepton

meson
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Hadron	Radius	Measurements

From: EPJC 8 (1999) 59, The WA89 Collaboration (measurement of  charge radius)Σ−

0.61 ± 0.12 ± 0.09
−0.1101 ± 0.0086

≈ 0.84 − 0.87

updated	21.6.2022

−0.077 ± 0.007 ± 0.011K0
L K0

L → π−π+e+e−

1986

2023

1986

2021
2001

1998

experiment	
year

comparatively good 
accuracies (pion radius ~2%) 

stem from assuming a 
theoretical shape of the form 

factor

p unmeasured
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Measuring	Hadron	Charge	Radii	in		
Inverse	Kinematics

Why	using	inverse	kinematics	?	
‣ with	no	stable	meson	target	existing	-	use	stable	lepton	target	

- hadron	is	beam	particle	—>	reaction	in	inverse	kinematics	

‣ kinematic	range	experimentally	„unreachable“	
- make	use	of	„easily“	measurable	quantities	to	address	„difficult	regime“	(mostly	low	Q2)	

• electron	initially	at	rest	—>	no	initial	external	Bremsstrahlung	
• final	electron	is	accelerated	—>	external	Bremsstrahlung	for	outgoing	electron	

- impact	on	particle	momentum	
- Impact	on	particle	trajectory	

• internal	Bremsstrahlung	effects	independent	of	reference	system	(vertex	corrections)

8Stephan Paul
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What	is	the	role	of	Q2
max

• large	values	of	Q2:	higher	sensitivity	to	charge	distribution	—>	 	

• small	values	of	Q2:	smaller	extrapolation	uncertainties	to	Q2	=	0	and		

< r2
E >

dF(Q2)
dQ2

|Q2=0

9

Beam Ebeam	 
[GeV] [GeV2]

Relative	charge-radius		

effect	on	σ(Q2)
π 280 0,268 ~54%

K 280 0,15 ~30%
K 80 0,021 			~5%
K 50 0,009 ~2-3%
p 280 0,070 ~28%

Q2
max
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• hadron	scattering	 	angle	
very	small	

• high	resolution	tracking

θh • scattered	hadron	used	to	
constrain	beam	momentum	

• high	momentum	resolution	
Δp/p < 0.3 − 0.4 %

Critical	Kinematic	Quantities

• largest	 scattering	angle	 	
determines	 	

• large	acceptance,	small	
multiple	scattering

e− θe
Q2

min

10

60	GeV 280	GeV



Setup	for	solid	target
• solid	target	(e.g.	1-25	mm	Be)	offers	large	acceptance	for	outgoing	electron	
• compress	set-up	

• Q2	via	three	independent	measurements	-	θe , θp , p′ hadron
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Simulate	Results	for	Kaons	and	Pions

• Assume	30	days	of	beam	time	(100%	efficiency)	-	use	pole	description	for	FF

12

pion

δrπ /rπ ≈ 0.3 %

kaon

δrK /rK ≈ 2 %
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Simulate	Results	for	Kaons	and	Pions

• Assume	30	days	of	beam	time	(100%	efficiency)	-	use	pole	description	for	FF

12

pion

δrπ /rπ ≈ 0.3 %

kaon

δrK /rK ≈ 2 %NA-7

19.3.2024 Chateau de Bossey



Separation	of	Kaon	and	Pion	Induced	Reactions	

• CEDAR	leaves	Kaon	beam	with	large	pion	contamination	(about	3%)	
• Can	we	separate	kaon	and	pion	induced	reactions	through	kinematics	?	

• yes..	but	only	for	 	(may	jeopardize	radiative	tail	detection)	

• measure	small	 	with	small	beam	momenta	for	kinematic	separation

Q2 > ≈ 5 − 10 ⋅ 10−3

Q2

13

1.5	mrad
300	μrad｝

｝

Stephan Paul

small	Q2electron	angle electron	angle hadron	angle

											Q2 [(GeV/c)2] 											Q2 [(GeV/c)2] 											Q2 [(GeV/c)2]
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And…The	Same	With	protons

• Two	techniques	to	extract	 :	

- fit	for	 	

‣ small	uncertainties	(but	external	input	-	 )	

‣ accuracy	limited	by	resolution	

< (rp
e )2 >

Rpoint = σ(Q2)exp/σ(Q2)point

GM(Q2)
δQ2

14

we	have	to	carefully	estimate		 	
uncertainties	far	below	1%	seem	possible

δQ2(Q2)



Radiative	Corrections

• with	190	GeV	protons,	we	have	to	consider	the	case	of	incoming	e-	of	105	MeV	beam	energy	
• Vertex	correction	and	internal	Bremsstrahlung	enter	with	opposite	sign	
• Issue:	identification	of	p-e-	scattering	-	kinematic	correlation	of	outgoing	particles	

– cut	in	cm	on	2%	momentum	correlation	(2	MeV)				-			cut	in	cm	on	20%	momentum	correlation	(20	MeV)									
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Inverse	kinematics	allows	easy	way	to	access	difficult	ep	kinematics	

• kinematic	variables	R,	ε,	τ	

• access	Rosenbluth	technique	through	variation	of	pbeam

Nucleons	in	Inverse	Kinematics

16

dσ
dQ2

=
4πα2

Q4
R (ϵ ⋅ G2

E + τ ⋅ G2
M)

Stephan Paul

	photon	polarization	
	reduced	 	

R:		normalization

ϵ :
τ : Q2

use	different	nucleon	beam	
momenta	to	access	 	G2

M(Q2)
high	energy	muon	scattering:		
little	sensitivity	to		 	G2

M(Q2)19.3.2024 Chateau de Bossey



Gp
M(Q2)

• Rosenbluth	separation	allows	for	extract	 	at	low	Q2	!	

• presently	-	knowledge	data	only	for		 	(Mainz	data)	

• Inverse	kinematics	could	add	information	for	 	

• first	measurement	in	this	kinematic	range	for	this	quantity	!	
• equivalent	incoming	electron	energies:	30-105	MeV	

Rosenbluth	separation	requires	variation	of		 	
Requires	many	beam	energies1

Gp
M(Q2)

Q2 > 0.02(GeV/c)2

0.004 > Q2 > 0.04(GeV/c)2

ϵ/τ

17
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Extraction	of	Gp
M(Q2) and Gp

E(Q2)

use	10	different	settings	(energy/target	thickness)	-	assume	130	days	of	beam	time	(100%	efficiency)	

perform	Rosenbluth	separation	and	fit	 	

• error	bars	depend	on	fitting	method	(very	preliminary)

σR versus ϵ
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Extraction	of	Gp
M(Q2) and Gp

E(Q2)

use	10	different	settings	(energy/target	thickness)	-	assume	130	days	of	beam	time	(100%	efficiency)	

perform	Rosenbluth	separation	and	fit	 	

• error	bars	depend	on	fitting	method	(very	preliminary)

σR versus ϵ
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Extraction	of	Gp
M(Q2) and Gp

E(Q2)

use	10	different	settings	(energy/target	thickness)	-	assume	130	days	of	beam	time	(100%	efficiency)	

perform	Rosenbluth	separation	and	fit	 	

• error	bars	depend	on	fitting	method	(very	preliminary)

σR versus ϵ
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Extract	Radius	via	GE(Q2)

• Two	techniques	to	extract	 :	

- fit	for	 	

‣ small	uncertainties	(but	external	input	-	 )	

‣ accuracy	limited	by	resolution	 	

- fit	 	

‣ accuracy	limited	by	number	of	settings	(range	in	 )	for	Rosenbluth	fits	and	correlation	with	
simultaneous	extraction	of	

< (rp
e )2 >

Rpoint = σ(Q2)exp/σ(Q2)point

GM(Q2)
δQ2

GE(Q2)
ϵ

GM(Q2)

19

we	have	to	carefully	
estimate		 	
uncertainties	far	
below	1%	seem	
possible

δQ2(Q2)
resolution	limited	
owing	to	limited	
range	in	 	
varying	 	leads	to	
smaller	

Q2

ϵ
Q2

max



Charge	Radius	of	Antiprotons

A. use	data	taking	mode	with	pions	-	assume	30	days	(no	variation	of	 )Ebeam
in

B. use	energy	dependent	fraction	of	 	in	pion	beamp

20

parasitic	running	with	pion

δrp /rp ≈ 4 %
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Charge	Radius	of	Antiprotons

A. use	data	taking	mode	with	pions	-	assume	30	days	(no	variation	of	 )Ebeam
in

B. use	energy	dependent	fraction	of	 	in	pion	beamp
• perform	Rosenbluth	separation	and	fit	 	and	obtain	 	σR versus ϵ Gp

E(Q2)

20

parasitic	running	with	pion

δrp /rp ≈ 4 %

dedicated	running	like	protons

Gp
E(Q2)
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Parasitic	Run	2024

First	(incomplete)	simulation	by	Ch.	Dreisbach	
• dynamic	range	defined	by	distance	Si(2)-Si(3)	
• target	area	upstream	of	H2/D2	target	
• trigger	

– use	thin	trigger	scintillator	downstream	of	SI(3)	

– trigger	on	all	incoming	kaons/antiprotons	(CEDAR)	

• Test	of	principle	and	first	measurement

21

Be	target

Silicon	1
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Parasitic	Run	2024

• some	kinematic	distributions	for	„present“	silicon	set-up	
– assumed	100	GeV,	distribution	 	for	 	beam,	full	reconstruction	

– at	small	 	using	full	event	reconstruction	( )

Δp/p μ
ΔQ2/Q2 < 7 % Q2 θh, θe, ⃗ph

22
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Summary	Inverse	Kinematics

• Meson radii are of key interest in understanding their inner structure 

• pions : data of previous experiments can be challenged (statistics !! + systematics) 

• kaons : significant increase of the form factor knowledge in the range 
 (factor 10) 

• large Q2 range possible (in particular down to very small Q2) 
accessible Q2  range determined by detection requirements for outgoing electron 

•      Proton inverse kinematics allows low Q2 kinematics and Rosenbluth separation  
•      Antiprotons: First ever measurements of form factors (incl. Rosenbluth separation) 

•      Comparison of proton - and antiproton - electron scattering sensitive to TPE 

10−4 < Q2 < 0.15 [(GeV/c)2]

Gp
M(Q2)

Stephan Paul8.8.2023 Quy Nhon
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Acceptances	-	MC	studies	with	Reconstruction	
Status	2023

• acceptances	translating	into	general	efficiencies	and	 	biasesQ2

25
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What	about	Q2	resolution	?

• Q2	will	be	determined	mostly	by	 	

• 	radiation	by	high	energy	electrons	(high	Q2	)	spoils	resolution	

• Measurement	of	 	can	help	

• at	very	high	Q2	also	 	can	be	used	(but	 )	

• at	present,	this	effect	has	not	been	accounted	for	
• First	estimates	could	be	obtained	with	McMule	(see	talk	by	Marco	Rocco)

θe

γ
θh

ph Δpbeam/pbeam ≈ 1 %

26
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	Content	of	M2-Beam	@	SPSp
p/π− @60 GeV : ≈ 30

p/π− @160 GeV : ≈ 90

p/π− @190 GeV : ≈ 170

28
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Hadron	Radius	Measurements

From: EPJC 8 (1999) 59, The WA89 Collaboration (measurement of  charge radius)Σ−

comparatively good accuracies (pion radius ~1%) stem from 
assuming a theoretical shape of the form factor

0.61 ± 0.12 ± 0.09
−0.1101 ± 0.0086

≈ 0.84 − 0.87

updated	21.6.2022

−0.077 ± 0.007 ± 0.011K0
L

1986

K0
L → π−π+e+e−

2020

1986

2021
2001

1998

experiment	
year
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	Kinematics
 𝐾− 𝑒−𝑡𝑎𝑟𝑔𝑒𝑡 →  𝐾− 𝑒−

𝑠 = 2𝐸𝑏𝑚𝑒 + 𝑚2
𝑏 + 𝑚2

𝑒  

Q2 ≈ 2me ⋅ Ee

Q2
max =

4 ⋅ m2
e ⋅ p2

b

s
= 4 ⋅ p2

cm

Beam Ebeam	 
[GeV] [GeV2] [GeV]

CM	momenta		

π 190 0,176 17.2 173 0,210

K 190 0,086 105.2 84.7 0,147
K 80 0,021 59.7 20.2 0,072
K 50 0,009 41.3 8.7 0,047
p 190 0,035 155.3 34.3 0,094

Q2
max

Q2
max Emin

scatter
Q2

max

Eelectron
max

	[GeV]

	[GeV]

	[GeV]
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Meson	Form	Factors

• Various	analytic	functions	are	discussed	for	hadronic	(mesonic)	form	factors	

• usual	problem:	slope	at	Q2=0	depends	on	extrapolation	
• various	Ansatz:	

– physics	motivated	Q2	dependence	of	FF	
– polynomial	or	quasi	spline	fit	extrapolation	to	Q2=0	„without	bias“

31Stephan Paul8.8.2023 Quy Nhon



The	Kaon	Case

• Only	scattering	data:	NA	7	
• 250	GeV	beam	
• 23	cm	LH2		target	
• Beam	intensity:	4.5	x	104/s

32

from	Physics	Letters	B	822	(2021)	136631

[(GeV/c)2]
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Pion-Electron	scattering

33

from	Physics	Letters	B	822	(2021)	136631

from	Physics	Letters	B	822	(2021)	136631
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Proton-Electron	scattering

Why	p-e-	scattering	?	
• complementary	measurement	to	Mainz,	JLAB	and	PSI	
• very	different	kinematics	and	twofold	reconstruction	of	Q2		
• scattered	proton	(multiple	scattering	of	little	issue)	
• outgoing	electron	(Bremsstrahlung	corrections	and	multiple	scattering	of	low	energy	electron)		
• high	beam	quality	(small	divergence,	small	beam	spot	size)	

What	is	the	equivalent	for	electron-proton	scattering	?	
• assume	pproton=190	GeV/c	
• equivalent	normal	kinematics	using	proton	at	rest:	pelectron=103.5	MeV/c	
• calculate	internal	Bremsstrahlung	for	the	equivalent	kinematics	
• variation	of	beam	energy	easy

34Stephan Paul8.8.2023 Quy Nhon




