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Alternative techniques

• MUSE: low energy µ and e beams of both polarities	

• ULQ2 (Tohoku): very low energy electron scattering (Suda et al.)	
• COMPASS: high energy µ beams of both polarities ( x 500 beam energy of MUSE!!) 

– beam energy irrelevant..  Q2 is important variable (see details later)	

– COMPASS has demonstrated excellent Q2  resolution with Primakoff reactions 	

– Coulomb peak from  scattering   - 	

– well performing spectrometer and well understood apparatus	

………………

πA π + Z → π + γ + Zrecoil ΔQ2 ≈ 5 × 10−4(GeV/c)2
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Beamline for High-Energy Muon Beams

• Muon momenta up to 200 GeV/c  - flux up to 107 µ/s  
• PRM: beam momentum of 100 GeV/c and 2 MHz beam rate 

• AMBER as successor at COMPASS location starting 2023 with the first full PRM pilot run in 10/2023 
→	broad physics program: PRM, Drell-Yan, Anti-Proton Cross-Section, use RF separated beams (plan)

M2 beamline
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AMBER

M2 beamline at CERN’s SPS 
North Area of CERN :  M2 beamline provides a unique high-intensity muon beam
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Hadron Radius Measurements with hadron Beams

• M2 beam line is also an excellent hadron beam line
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Particle ID	
• use 2 Beam CEDARs	
• efficiently tag rarest hadron
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Hadron Charge Radii 	
Through Elastic Hadron-Lepton Scattering 

at low Q2
Protons in hydrogen target (or other stable nuclei): 
Measurement via elastic electron or muon scattering 
Cross section:

Charge radius from the slope of GE

lepton

proton
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Hadron Charge Radii 	
Through Elastic Hadron-Lepton Scattering 

at low Q2
Protons in hydrogen target (or other stable nuclei): 
Measurement via elastic electron or muon scattering 
Cross section:

Charge radius from the slope of GE

For unstable particles, electron scattering can only be realised 
in inverse kinematics

lepton

proton

electron

meson

Stephan Paul

lepton

meson
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Hadron Radius Measurements

From: EPJC 8 (1999) 59, The WA89 Collaboration (measurement of  charge radius)Σ−

0.61 ± 0.12 ± 0.09
−0.1101 ± 0.0086

≈ 0.84 − 0.87

updated 21.6.2022

−0.077 ± 0.007 ± 0.011K0
L K0

L → π−π+e+e−

1986

2023

1986

2021
2001

1998

experiment	
year

comparatively good 
accuracies (pion radius ~2%) 

stem from assuming a 
theoretical shape of the form 

factor

p unmeasured
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Measuring Hadron Charge Radii in 	
Inverse Kinematics

Why using inverse kinematics ?	
‣ with no stable meson target existing - use stable lepton target	

- hadron is beam particle —> reaction in inverse kinematics	

‣ kinematic range experimentally „unreachable“	
- make use of „easily“ measurable quantities to address „difficult regime“ (mostly low Q2)	

• electron initially at rest —> no initial external Bremsstrahlung	
• final electron is accelerated —> external Bremsstrahlung for outgoing electron	

- impact on particle momentum	
- Impact on particle trajectory	

• internal Bremsstrahlung effects independent of reference system (vertex corrections)

8Stephan Paul
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What is the role of Q2
max

• large values of Q2: higher sensitivity to charge distribution —> 	

• small values of Q2: smaller extrapolation uncertainties to Q2 = 0 and  

< r2
E >

dF(Q2)
dQ2

|Q2=0
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Beam Ebeam  
[GeV] [GeV2]

Relative charge-radius 	

effect on σ(Q2)
π 280 0,268 ~54%

K 280 0,15 ~30%
K 80 0,021    ~5%
K 50 0,009 ~2-3%
p 280 0,070 ~28%

Q2
max

Stephan Paul19.3.2024 Chateau de Bossey



• hadron scattering  angle 
very small	

• high resolution tracking

θh • scattered hadron used to 
constrain beam momentum	

• high momentum resolution 
Δp/p < 0.3 − 0.4 %

Critical Kinematic Quantities

• largest scattering angle  
determines 	

• large acceptance, small 
multiple scattering

e− θe
Q2

min
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60 GeV 280 GeV



Setup for solid target
• solid target (e.g. 1-25 mm Be) offers large acceptance for outgoing electron	
• compress set-up	

• Q2 via three independent measurements - θe , θp , p′￼hadron
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Simulate Results for Kaons and Pions

• Assume 30 days of beam time (100% efficiency) - use pole description for FF

12

pion

δrπ /rπ ≈ 0.3 %

kaon

δrK /rK ≈ 2 %

19.3.2024 Chateau de Bossey



Simulate Results for Kaons and Pions

• Assume 30 days of beam time (100% efficiency) - use pole description for FF
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pion

δrπ /rπ ≈ 0.3 %

kaon

δrK /rK ≈ 2 %NA-7
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Separation of Kaon and Pion Induced Reactions 

• CEDAR leaves Kaon beam with large pion contamination (about 3%)	
• Can we separate kaon and pion induced reactions through kinematics ?	

• yes.. but only for  (may jeopardize radiative tail detection)	

• measure small  with small beam momenta for kinematic separation

Q2 > ≈ 5 − 10 ⋅ 10−3

Q2
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1.5 mrad
300 μrad｝

｝
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small Q2electron angle electron angle hadron angle

           Q2 [(GeV/c)2]            Q2 [(GeV/c)2]            Q2 [(GeV/c)2]
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And…The Same With protons

• Two techniques to extract :	

- fit for 	

‣ small uncertainties (but external input - )	

‣ accuracy limited by resolution 

< (rp
e )2 >

Rpoint = σ(Q2)exp/σ(Q2)point

GM(Q2)
δQ2
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we have to carefully estimate  	
uncertainties far below 1% seem possible

δQ2(Q2)



Radiative Corrections

• with 190 GeV protons, we have to consider the case of incoming e- of 105 MeV beam energy	
• Vertex correction and internal Bremsstrahlung enter with opposite sign	
• Issue: identification of p-e- scattering - kinematic correlation of outgoing particles	

– cut in cm on 2% momentum correlation (2 MeV)    -   cut in cm on 20% momentum correlation (20 MeV)         
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Inverse kinematics allows easy way to access difficult ep kinematics	

• kinematic variables R, ε, τ	

• access Rosenbluth technique through variation of pbeam

Nucleons in Inverse Kinematics

16

dσ
dQ2

=
4πα2

Q4
R (ϵ ⋅ G2

E + τ ⋅ G2
M)

Stephan Paul

 photon polarization	
 reduced 	

R:  normalization

ϵ :
τ : Q2

use different nucleon beam 
momenta to access  G2

M(Q2)
high energy muon scattering: 	
little sensitivity to   G2

M(Q2)19.3.2024 Chateau de Bossey



Gp
M(Q2)

• Rosenbluth separation allows for extract  at low Q2 !	

• presently - knowledge data only for   (Mainz data)	

• Inverse kinematics could add information for 	

• first measurement in this kinematic range for this quantity !	
• equivalent incoming electron energies: 30-105 MeV	

Rosenbluth separation requires variation of  	
Requires many beam energies1

Gp
M(Q2)

Q2 > 0.02(GeV/c)2

0.004 > Q2 > 0.04(GeV/c)2

ϵ/τ

17
1target thickness Δx(Ebeam)



Extraction of Gp
M(Q2) and Gp

E(Q2)

use 10 different settings (energy/target thickness) - assume 130 days of beam time (100% efficiency)	

perform Rosenbluth separation and fit 	

• error bars depend on fitting method (very preliminary)

σR versus ϵ

18

10−3 10−2

Mott

Gp
M(Q2)



Extraction of Gp
M(Q2) and Gp

E(Q2)

use 10 different settings (energy/target thickness) - assume 130 days of beam time (100% efficiency)	

perform Rosenbluth separation and fit 	

• error bars depend on fitting method (very preliminary)

σR versus ϵ
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Extraction of Gp
M(Q2) and Gp

E(Q2)

use 10 different settings (energy/target thickness) - assume 130 days of beam time (100% efficiency)	

perform Rosenbluth separation and fit 	

• error bars depend on fitting method (very preliminary)

σR versus ϵ
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Extract Radius via GE(Q2)

• Two techniques to extract :	

- fit for 	

‣ small uncertainties (but external input - )	

‣ accuracy limited by resolution 	

- fit 	

‣ accuracy limited by number of settings (range in ) for Rosenbluth fits and correlation with 
simultaneous extraction of 

< (rp
e )2 >

Rpoint = σ(Q2)exp/σ(Q2)point

GM(Q2)
δQ2

GE(Q2)
ϵ

GM(Q2)

19

we have to carefully 
estimate  	
uncertainties far 
below 1% seem 
possible

δQ2(Q2)
resolution limited 
owing to limited 
range in 	
varying  leads to 
smaller 

Q2

ϵ
Q2

max



Charge Radius of Antiprotons

A. use data taking mode with pions - assume 30 days (no variation of )Ebeam
in

B. use energy dependent fraction of  in pion beamp

20

parasitic running with pion

δrp /rp ≈ 4 %
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Charge Radius of Antiprotons

A. use data taking mode with pions - assume 30 days (no variation of )Ebeam
in

B. use energy dependent fraction of  in pion beamp
• perform Rosenbluth separation and fit  and obtain  σR versus ϵ Gp

E(Q2)

20

parasitic running with pion

δrp /rp ≈ 4 %

dedicated running like protons

Gp
E(Q2)
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Parasitic Run 2024

First (incomplete) simulation by Ch. Dreisbach	
• dynamic range defined by distance Si(2)-Si(3)	
• target area upstream of H2/D2 target	
• trigger	

– use thin trigger scintillator downstream of SI(3)	

– trigger on all incoming kaons/antiprotons (CEDAR)	

• Test of principle and first measurement

21

Be target

Silicon 1

Silicon 2

Silicon 3
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Parasitic Run 2024

• some kinematic distributions for „present“ silicon set-up	
– assumed 100 GeV, distribution  for  beam, full reconstruction	

– at small  using full event reconstruction ( )

Δp/p μ
ΔQ2/Q2 < 7 % Q2 θh, θe, ⃗ph

22
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Summary Inverse Kinematics

• Meson radii are of key interest in understanding their inner structure 

• pions : data of previous experiments can be challenged (statistics !! + systematics) 

• kaons : significant increase of the form factor knowledge in the range 
 (factor 10) 

• large Q2 range possible (in particular down to very small Q2) 
accessible Q2  range determined by detection requirements for outgoing electron 

•      Proton inverse kinematics allows low Q2 kinematics and Rosenbluth separation  
•      Antiprotons: First ever measurements of form factors (incl. Rosenbluth separation) 

•      Comparison of proton - and antiproton - electron scattering sensitive to TPE 

10−4 < Q2 < 0.15 [(GeV/c)2]

Gp
M(Q2)

Stephan Paul8.8.2023 Quy Nhon
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Acceptances - MC studies with Reconstruction	
Status 2023

• acceptances translating into general efficiencies and  biasesQ2

25

double track 
resolution

geometrical 
acceptance

geometrical 
acceptance

double track 
resolution

z-vertex

electron angle	
relative



What about Q2 resolution ?

• Q2 will be determined mostly by 	

•  radiation by high energy electrons (high Q2 ) spoils resolution	

• Measurement of  can help	

• at very high Q2 also  can be used (but )	

• at present, this effect has not been accounted for	
• First estimates could be obtained with McMule (see talk by Marco Rocco)

θe

γ
θh

ph Δpbeam/pbeam ≈ 1 %

26
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 Content of M2-Beam @ SPSp
p/π− @60 GeV : ≈ 30

p/π− @160 GeV : ≈ 90

p/π− @190 GeV : ≈ 170

28
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Hadron Radius Measurements

From: EPJC 8 (1999) 59, The WA89 Collaboration (measurement of  charge radius)Σ−

comparatively good accuracies (pion radius ~1%) stem from 
assuming a theoretical shape of the form factor

0.61 ± 0.12 ± 0.09
−0.1101 ± 0.0086

≈ 0.84 − 0.87

updated 21.6.2022

−0.077 ± 0.007 ± 0.011K0
L

1986

K0
L → π−π+e+e−

2020

1986

2021
2001

1998

experiment	
year
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 Kinematics
 𝐾− 𝑒−𝑡𝑎𝑟𝑔𝑒𝑡 →  𝐾− 𝑒−

𝑠 = 2𝐸𝑏𝑚𝑒 + 𝑚2
𝑏 + 𝑚2

𝑒  

Q2 ≈ 2me ⋅ Ee

Q2
max =

4 ⋅ m2
e ⋅ p2

b

s
= 4 ⋅ p2

cm

Beam Ebeam  
[GeV] [GeV2] [GeV]

CM momenta 	

π 190 0,176 17.2 173 0,210

K 190 0,086 105.2 84.7 0,147
K 80 0,021 59.7 20.2 0,072
K 50 0,009 41.3 8.7 0,047
p 190 0,035 155.3 34.3 0,094

Q2
max

Q2
max Emin

scatter
Q2

max

Eelectron
max

 [GeV]

 [GeV]

 [GeV]

Stephan Paul8.8.2023 Quy Nhon



Meson Form Factors

• Various analytic functions are discussed for hadronic (mesonic) form factors	

• usual problem: slope at Q2=0 depends on extrapolation	
• various Ansatz:	

– physics motivated Q2 dependence of FF	
– polynomial or quasi spline fit extrapolation to Q2=0 „without bias“

31Stephan Paul8.8.2023 Quy Nhon



The Kaon Case

• Only scattering data: NA 7	
• 250 GeV beam	
• 23 cm LH2  target	
• Beam intensity: 4.5 x 104/s

32

from Physics Letters B 822 (2021) 136631

[(GeV/c)2]
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Pion-Electron scattering

33

from Physics Letters B 822 (2021) 136631

from Physics Letters B 822 (2021) 136631

Stephan Paul8.8.2023 Quy Nhon



Proton-Electron scattering

Why p-e- scattering ?	
• complementary measurement to Mainz, JLAB and PSI	
• very different kinematics and twofold reconstruction of Q2 	
• scattered proton (multiple scattering of little issue)	
• outgoing electron (Bremsstrahlung corrections and multiple scattering of low energy electron) 	
• high beam quality (small divergence, small beam spot size)	

What is the equivalent for electron-proton scattering ?	
• assume pproton=190 GeV/c	
• equivalent normal kinematics using proton at rest: pelectron=103.5 MeV/c	
• calculate internal Bremsstrahlung for the equivalent kinematics	
• variation of beam energy easy

34Stephan Paul8.8.2023 Quy Nhon




