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Towards discoveries in 
 semi/hard hadron physics
Color transparency in hard 2–>3 hadron induced processes and 

 probing of nondiagonal GPD and  perturbative Reggeons
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Hadron physics - two focal points: structure of hadrons and dynamics of 

 strong interaction. Critical role    played by processes for which factorization theorems  hold. 

Theorems identify  the processes for which  separation between   wave function  and effects of 
initial /final state interaction holds: DIS, DY 

Proof of factorization  is based on use of closure  —> one dimensional image  of nucleon, pion,. 

Not sufficient to understand parton structure of hadrons or final state o  

for pp collision with production of two jets.  
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Analysis of Frankfurt et al.: Data on the DIS at HERA, exclusive vector meson
production: data are consistent with pQCD expression for cross section for small

d ≤ 0.3 fm qq̄ dipoles and smooth matching with soft physics at d ≥ 0.6 fm:
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1D - momentum + 2D transverse coordinates -  2D slices at set of x values 

The longitudinal fractions - x’s and the transverse separations between the constituents in the projectile 
do not change during the interaction if energy of collisions  is high enough. 

Hence it should be possible to measure 3D distribution of partons in nucleon: 

~ CT computer tomography

1D - parton distribution

x 3D - generalized
 parton
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High energy scanning - step I1 - three D scan 

      The name tomography refers to the fact that the scanner computes a 
"slice" of the scanned object, not just a flat image. Each slice really is 
a volumetric image  made up of "voxels." Each voxel represents a 
three-dimensional cube of the slice.

      In this process the object is determined by collecting the projections. 
A projection is the set of measurements, taken at the numerous beam 
positions.
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Generalized parton distributions



High energy CT = QCD factorization theorem for DIS exclusive meson 
processes The prove is based (as for dijet production) on the CT property of QCD 
not on closure like the factorization theorem for inclusive DIS.   
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4Wewillgivethedefinitionlater.Thefactor↵
j
V

is

thelight-conewavefunctionforthemeson,andH
ijisthe

hardscatteringfunction.Thesumsareoverthepartontypes

iandjthatconnectthehardscatteringtothedistribution

functionandtothemeson.Sincethemesonhasnonzero

flavor,thepartonjisrestrictedtobeaquark.Thefactoriza-

tiontheoremEq.⇤3�isillustratedinFig.1.
Theaboveformulaiscorrectfortheproductionoflongi-

tudinallypolarizedvectormesons.Fortheproductionof

transverselypolarizedvectormesonsorofpseudoscalarme-

sons,wehaveaformulaofexactlythesamestructure,butin

whichtheunpolarizedpartondensityisreplacedbyapolar-

izedpartondensity⇤thetransversitydensityfortransverse

vectormesons,andthehelicitydensityforpseudoscalarme-

sons�.Similarchangeswillneedtobemadetothedefinition

ofthemesonwavefunction. Theparameter⌅inEq.⇤3�istheusualrenormalization-

factorizationscale.ItshouldbeoforderQ,inorderthatthe

hardscatteringfunctionH
ijbecalculablebytheuseof

finite-orderperturbationtheory.The⌅dependenceofthe

distributionfi/pandofthelight-conewavefunction↵
j
V

are

givenbyequationsoftheDokshitzer-Gribov-Lipatov-

Altarelli-Parisi⇤DGLAP�kind,aswewilldiscussinSec.

VIII.
TypicallowestordergraphsforHareshowninFig.2.

ConsiderFig.2⇤a�,allofwhoseexternallinesarequarks.

Afterwegothroughthederivationofthefactorizationtheo-

rem,andhaveconstructeddefinitionsofthedistributionfi/p

andofthelight-conewavefunction↵V
,wewillbeableto

seethatthedefinitionofHisthesumofgraphssuchasFig.

2⇤a�contractedwithsuitableexternallinefactorsthatcorre-

spondtotheDiracwavefunctionsofthepartons.Inthecase

oflongitudinalvectormesonproduction,thefactorsare

1
2p⇤✏�

forthelowertwolinesand1
2V�✏⇤

forthelines

connectedtotheoutgoingmeson.Thesefactorsarerelatedto

spinaveragesofDiracwavefunctionsforthequarks.

Inthecaseofthegluon-inducedsubprocess,Fig.2⇤b�,the

externalfermionlinesofHaretobecontractedwiththe

samefactorsasbefore,butthetwogluonlinesaretobe

contractedwith⇧ �/2,where and�aretransverseindices,

andthe1/2representsakindofspinaverage.

SeeSec.IXformoreinformationontheprecisenormal-

izationconventionsforthehardscatteringfunction. B.Definitionsoflight-conedistributionsandamplitudes:

Longitudinalvectormeson
1.Quarkdistribution Thedistributionfunctionfi/pandmesonamplitude↵

j
V

aredefined,asusual,asmatrixelementsofgauge-invariant

bilocaloperatorsonthelightcone.Inthecaseofaquarkof

flavori,wedefine

fi/p⇤x1,x2,t,⌅�

⇥⇥
�⌥

⌥dy�

4⌃e�ix2p
⇤

y�

⇥p��T⌦̄⇤0,y�
,0T�✏⇤P⌦⇤0��p�,

⇤4�
wherePisapath-orderedexponentialofthegluonfield

alongthelightlikelinejoiningthetwooperatorsforaquark

offlavori.Wehavedefinedx1tobethefractionalmomen-

tumgivenbythequarktothehardscatteringand�x2tobe

themomentumgivenbytheantiquark;inthefactorization

theoremtheyobeyx1�x2⇥x,withxbeingtheusual

Bjorkenvariable.Atfirstsighttheright-hand-sideofEq.⇤4�

appearstodependonlyonx2andnotonx1noront.The

dependenceontheothertwovariablescomesfromthefact

thatthematrixelementisnonforward.Thedifferenceinmo-

mentumbetweenthestates�p�and�p��togetherwiththe

useofalight-coneoperatorbringsindependenceonx1and

ont.Itisnecessarytotakeonlytheconnectedpartofthe

matrixelement.
Thesamedefinitionhasrecentlybeengivenanddiscussed

byJiandRadyushkin�12–14�.AsJipointsout,whent⇣0

thereareinfacttwoseparatepartondensities,withdifferent

dependenceonthenucleonspin.Forthepurposesofour

proof,itwillbeunnecessarytotakethisintoaccountexplic-

itly;wecansimplysupposethatthisandtheotherparton

densitieshavedependenceonthespinstateofthehadron

states�p�and�p��. Theusualquarkdensityfi/p(x,⌅)isobtainedbysetting

t⇥0andx1⇥x2⇥xinEq.⇤4�.Inaddition,itwouldappear

thatonehastoremovethetime-orderingoperationfromthe

operatoroperatorsinEq.⇤4�toobtaintheoperatorusedfor

thepartondensitiesassociatedwithinclusivescattering�17�.

Weneedtime-orderedoperatorsinourpresentworkbecause

4
Infact,ourwholepaperappliestoamoregeneralcase.The

final-stateprotoninEq.⇤1�maybereplacedbyageneralbaryon:a

neutron,forexample.Thentheexchangedobjectnolongerhasto

havevacuumquantumnumbers.Theindexiinthefactorization

theoremisthentobereplacedbyapairofindicesfortheflavorsof

thetwoquarklinesjoiningthepartondensityfi/ptothehardscat-

tering.Similarly,thetwoquarklinesenteringthemesonmaybe

different,andtheindexjistobereplacedbyapairofindices.

FIG.2.Typicallowest-ordergraphsforH.

FIG.1.Factorizationtheorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor ↵ j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. ⇤3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density ⇤the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter ⌅ in Eq. ⇤3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The ⌅ dependence of the

distribution f i/p and of the light-cone wave function ↵ j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ⇤DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2⇤a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function ↵V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2⇤a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

⇤✏� for the lower two lines and 1
2V

�✏⇤ for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2⇤b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ⇧ �/2, where  and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude ↵ j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p⇤x1 ,x2 ,t ,⌅�

⇥⇥
�⌥

⌥ dy�

4⌃
e�ix2p

⇤y�
⇥p��T⌦̄⇤0,y�,0T�✏

⇤P⌦⇤0 ��p�,

⇤4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2⇥x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. ⇤4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t⇣0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,⌅) is obtained by setting

t⇥0 and x1⇥x2⇥x in Eq. ⇤4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. ⇤4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. ⇤1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .
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π + T (A, N) → jet1 + jet2 + T (A, N)

partonic scattering process, which is calculable in powers of . The indices label

the different parton species. The contribution of diagrams in which the hard scattering process

involves more than the minimum number of partons is suppressed by . An important con-

sequence of factorization is that the –dependence of the amplitude rests entirely in the GPD.

Thus, different processes probing the same GPD should exhibit the same –dependence.

4.2 Space–time picture: “Squeezing” of hadrons

The physics of hard exclusive processes at small becomes most transparent when following

the space–time evolution in the target rest frame. As in the case of inclusive scattering, this

approach allows one to expose the limits of the leading–twist approximation, and to quantify

power corrections due to the nite transverse size of the produced meson.

In exclusive vector meson production, , one can identify three distinct stages

in the time evolution in the target rest frame. The virtual photon dissociates into a dipole

of transverse size at a time coh before interacting with the

target, cf. Eq. (3). The dipole then scatters from the target, and “lives” for a time

before forming the nal state vector meson. The difference in the time scales is due to the

smaller transverse momenta (virtualities) allowed by the meson wave function as compared to

the virtual photon.

In the leading logarithmic approximation in QCD , the effects of QCD radiation can

again be absorbed in the amplitude for the scattering of the small–size dipole off the target. It

can be shown by direct calculation of Feynman diagrams that the leading term for small dipole

sizes is proportional to the generalized gluon distribution, eff , where eff

[7]. A simpler approach is to infer the result for the imaginary part of the amplitude from

the expression for the cross section, Eq. (6), via the optical theorem. The imaginary part is

proportional to the generalized gluon distribution at and . At sufciently large

t

x
1

!xx
1

process
Hard scattering

amplitude
Meson distribution

Generalized
parton distribution

f

H

!
"*

L

M

Figure 4: Factorization of the amplitude of hard exclusive meson production, Eq. (12).
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Baryo-baryonic

�� + N � � + N(baryonic system)

��L + N � ”meson”(mesons) + N(baryonic system)

D.Muller 94 et al, Radyushkin 96, Ji 96, Collins &Freund 98

Brodsky,Frankfurt, Gunion,Mueller, MS 94
 - vector mesons, small x

Collins, Frankfurt, MS 97 - 

provide  new effective tools for study of the 3D 
hadron structure,  high energy color transparency 
and opacity and chiral dynamics

Frankfurt, Miller, MS 93



=⇒ Need to trigger on small size configurations at high energies.

Two ideas:

⋄ Select special final states: diffraction of pion into two high transverse
momentum jets - an analog of the positronium inelastic diffraction. Qualitatively
- from the uncertainty relation d ∼ 1/pt(jet)

⋄ ⋄ Select a small initial state - diffraction of longitudinally polarized virtual
photon into mesons. Employs the decrease of the transverse separation between
q and q̄ in the wave function of γ∗

L, d ∝ 1/Q.

M.Strikman

For hadron & photon beam main requirement that squeezing is significant  

enough. Entering color transparency regime. 
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π + N(A) → “2 high pt jets′′ + N(A)

Mechanism:
Pion approaches the target in a frozen small size qq̄ configuration
and scatters elastically via interaction with Gtarget(x, Q2).

the first analysis for πp scattering Randa(80), nuclear effects - Bertsch, Brodsky,
Goldhaber, Gunion (81), pQCD treatment: Frankfurt, Miller, MS (93)

q

q

π

t

A(N) A(N)

(1-z)P

zP

π

π

, k

-k

t

A(π + N → 2 jets + N)(z, pt, t = 0) ∝
∫

d2dψqq̄
π (z, d)σ”qq̄”−N(A)(d, s) exp(ikt · d),

d = rq
t − rq̄

t , ψqq̄
π (z, d) ∝ z(1 − z)d→0 is the light-cone qq̄ pion wave function.

M.Strikman

First attempt of the theoretical analysis of   πN process - Randa 80 - power law 
dependence of pt of the jet (wrong power)

First attempt of the theoretical analysis of   πA process - Brodsky et al 81 - 
exponential suppression of pt spectra, weak A dependence (A1/3)

❖

❖

❖ pQCD analysis - Frankfurt, Miller, MS 93; elaborated arguments related to 
factorization 2003
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π + N(A) → “2 high pt jets′′ + N(A)

Mechanism:
Pion approaches the target in a frozen small size qq̄ configuration
and scatters elastically via interaction with Gtarget(x, Q2).

the first analysis for πp scattering Randa(80), nuclear effects - Bertsch, Brodsky,
Goldhaber, Gunion (81), pQCD treatment: Frankfurt, Miller, MS (93)

q

q

π

t

A(N) A(N)

(1-z)P

zP

π

π

, k

-k

t

A(π + N → 2 jets + N)(z, pt, t = 0) ∝
∫

d2dψqq̄
π (z, d)σ”qq̄”−N(A)(d, s) exp(ikt · d),

d = rq
t − rq̄

t , ψqq̄
π (z, d) ∝ z(1 − z)d→0 is the light-cone qq̄ pion wave function.

M.Strikman

One of dominant 
diagrams 

Examples of the Suppressed diagrams 

gluon in the initial and final state wave functions are effec-

tively the same as for a gluon interaction with quarks except

for the Casimir operator of the color group in the octet and

the triplet representation. A subtle point of calculation is to

evaluate the z dependence of this ratio. For certainty in the

evaluation of term T2 we assume that the nonperturbative

pion wave function is equal to the asymptotic one.

Thus the ratio is determined by the color content of color

flow in the pion wave function and the quark color and by

the dependence of energy denominators on the fraction of

pion momentum carried by quarks and gluons. So

T2

T1
!
F2!8 "

F2!3 "! "1#
1

z!1"z "
#

z

!1"z "2
ln z

#
!1"z "

z2
ln!1"z " " . !24"

Here F2(i) !for i!8,3" is the Casimir operator for octet and
triplet representations of color group SU(3)c . The ratio

T2 /T1 is #0.5 for z!1/2, remains nearly constant for #z
" .5#$0.3 and increases to 9/8 at z!0,1. This term is addi-

tionally suppressed by the Sudakov-type form factor and by

the form factor w2—see the discussion below.

C. Final state interaction of the qq̄ pair—T3

The interaction with the target gluons may occur before

the interaction between quarks in the final state, and the re-

lated amplitudes are denoted as T3, see Figs. 5 and 6.

The term T3a includes the effect of the final state qq̄

interaction. Figure 6 includes the interaction of a target gluon

with color flow in the wave function of final state.

We need to evaluate only the s" ,u" channel cuts of the

diagram %and use Eq. !3" to get any necessary real part&. It is
useful to define l t as the quark transverse momentum within

the pion wave function. Then there are two kinematic re-

gimes to consider. The first has l t$' t , k1t$' t , and the sec-

ond l t
2(k1t

2 (' t
2 . We consider the former regime first, as it is

expected to be more important. In this case, we shall employ

conservation of the four-momentum to evaluate x2. Conser-

vation of the four-momentum can be used to relate the inter-

mediate state !denoted by the vertical dashed line, occurring
between the emission and the absorption of the gluons by the

target in the diagram of Fig. 5 %35&" of momentum p̃ with

p̃2)m̃2 with the intermediate state. The mass of the qq̄ in-

termediate state is given by

m̃2#x1*"x1+*"k1t
2 !25"

where + is the light cone fraction of the pion momentum

carried by an exchanged gluon: +!"k1
"/p,

"!"k2
"/p,

" .

Thus we arrive at the equation

x1!
m̃2#k1t

2

!1"+"*
. !26"

It follows from the requirement of positivity of energies of

all produced particles in the intermediate states that 0$+
$1. We can now calculate m̃2 directly in terms of the light

cone momenta of the qq̄ pair in the intermediate state:

m̃2!! l t2
z

#
!k1t"l t"

2

1"z"+ " !1"+""k1t
2 . !27"

Combining Eqs. !25",!27" we obtain

l t
2

z
#

!k1t"l t"
2

1"+"z
!x1* , !28"

which, when using Eq. !5", leads to

x1!
1

* ! l t2
z

#
!k1t"l t"

2

1"+"z
" !

m2 jet
2

*
#x2 . !29"

Therefore

x2!
1

* ! l t2
z

#
!k1t"l t"

2

1"+"z
"

' t
2

z!1"z " " . !30"

In order for the term T3a to compete with T1a we need to

have l t$' t , k1t$' t—otherwise T3a will be additionally

suppressed by the power of ' t
2 ,-s . These kinematics cause

Eq. !30" to yield the result "x2.' t
2/* .

This argument can be carried out for all combinations of

diagrams represented by Fig. 5. For example, another attach-

ment of gluons, in which the gluon k1 is absorbed by the

quark, corresponds to interchanging z with 1"z , and there-

FIG. 3. Contribution to T2a of the qq̄g intermediate state. The

exchanged gluon interacts with with each of the target gluons.

There is also a diagram in which the gluons from the target are

crossed, and another two in which the exchanged gluon is emitted

by the anti-quark. Only a single diagram of the four that contribute

is shown.

FIG. 4. Contribution to T2b from the qq̄g intermediate state.

The interaction of one target gluon field with an exchanged gluon in

the intermediate states. There is also a diagram in which the gluons

from the target are crossed, and another group in which the ex-

changed gluon is emitted by the anti-quark. Only one of 16 dia-

grams that contribute is shown.
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fore leads to the same result for x2. Evidently this result for

x2 is valid in the leading !sln "t
2/#QCD

2 approximation also.

Thus we consider the second situation: l t
2$k1t

2 $" t
2 . In this

case, the initial pion wave function contains a hard quark,

and we discuss hard radiative correction in the next order of

!s . This is the typical situation in which there are extra hard

lines, as compared with the dominant terms, and one obtains

a suppression factor $1/" t
2 which could be compensated by

the d2kt integral. However, this integral does not produce

ln "t
2/#QCD

2 because the region of integration is too narrow.

So this contribution is at most the non-leading-order %NLO&
correction over !s . But we restrict ourselves by the leading-

order %LO& contribution only.
The presence of color flow in the wave function of the

final state leads to the interaction of a target gluon with a

gluon in the wave function of the final state; see Fig. 6. This

term is suppressed by an additional power of 1/" t
2 . The proof

of this statement repeats the same reasoning as that explain-

ing the suppression of the term T1b . It heavily uses the WW

and the Gribov representations, discussed in Sec. II A, and

the identities which follow from the antisymmetry of the

vertex for the three gluon interaction, the color neutrality of

the pion wave function, and the dijet final state. In the deri-

vation it is helpful to use the observation that effectively

!x2!'" t
2/( . Evidently similar reasoning is applicable in com-

puting amplitudes to leading order in !s and all orders in

!sln "t
2/lt
2 .

Repeating the same reasoning as in the estimate of the

terms of T1a ,T1b , and remembering that !x2)" t
2/( we

achieve the estimate T3'!s
2x1GA(x1 ,x2 ," t

2)/" t
4 . It is in-

structive to investigate whether the Feynman mechanism,

where the leading quark %anti-quark& carries a fraction of the
pion momentum z! close to 1 but high momentum jets are

formed by the action of a final state interaction, may compete

with the PQCD description. In this case transverse momenta

of constituents l t in the pion wave function are expected to

be equal to the mean transverse momenta of partons in the

non-perturbative regime. For certainty let us model the Feyn-

man mechanism by assuming that recoil system is quark

%anti-quark& with momentum 1!z! close to 0. Within this
model we will obtain Feynman diagrams for the term T2, but

with the region of integration defined by the Feynman

mechanism. A simple dimensional evaluation of term T3 due

to the Feynman mechanism within the Gribov representation

shows that it is suppressed by the powers of " t . The contri-

bution of the region l t
2/(1!z!)"M 2 jet

2 has been considered

above—it is additionally suppressed for the Feynman mecha-

nism by the restriction of the region of integration over z!.
Thus our next discussion is restricted by the consideration of

the contribution of the region, l t
2/(1!z!)*M 2 jet

2 :

T3'
1

" t
2" +,%z!,l t

2&
1

Mint
2 !M 2 jet

2

% l t&
2

%1!z!&
d2l tdz!. %31&

In the above formulas we use the Brodsky-Lepage conven-

tion for the definition of wave functions and retain terms

maximally singular when z!→1. Power counting is simple:

the factor l t
2/(1!z!)" t

2 is from the gluon exchange in the

final state. The factor l t
2/(1!z!) is singular when z!→1. It

originates from the quark vertexes accompanying the propa-

gator of the gluon exchanged in the wave function of final

state. Here 1/(1!z!) follows from a transition when a frac-

tion of the pion momentum carried by a quark tends to 0.

The factor M 2(2 jet)!l t
2/z!(1!z!) in the denominator is

due the fermion propagator adjacent to the hard gluon ex-

change in the wave function of the final state. Here Mint
2

)(mrec
2 #l t

2)/(1!z!) is the mass of an intermediate state,
and mrec

2 is the invariant mass of the recoil system in the

Feynman mechanism. In the region of integration 1!z!
"l t

2/M 2 jet
2 one may neglect by M 2(2 jet) in the denominator

as compared to l t
2/(1!z!). So one obtains T2

'(1/" t
2)-+,(z!,l t

2)d2l tdz!. In this case, another factor of
1/" t

4 arises from the integration over z!. Hence we have
found that the Feynman mechanism is a higher twist correc-

tion to the PQCD contribution. The Feynman mechanism is

further suppressed by the requirement of a lack of collinear

to pion momentum radiation—see the discussion below.

D. Gluon admixture to the wave functions of initial and final

states—T4

The Feynman diagram corresponding to Fig. 7 contains

the time ordering corresponding to the qq̄g configuration in

the pion wave function interacting with the quarks in the

final state. In taking the imaginary part of the amplitude, the

intermediate state must contain a hard on-shell quark and a

hard on-shell gluon. But such a state cannot be produced by

a soft almost on-shell quark in the initial state, so there is an

additional suppression factor, caused by the rapid decrease of

the non-perturbative pion wave function with increasing

FIG. 5. Contribution to T3a . The high momentum component of

the final qq̄ pair interacts with the two-gluon field of the target.

Only a single diagram of the eight that contribute is shown.

FIG. 6. Contribution to T3b . A gluon from the two-gluon field

of the target interacts with the high momentum component of the

final qq̄ pair wave function. Only a single diagram of the eight that

contribute is shown.
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quark virtuality. This factor is greater than a power of ! t
2 .

One may also consider the case when the transverse mo-

menta of quarks in the pion wave function are large enough

to use PQCD. Then the large virtuality of the quark intro-

duces a suppression factor of 1/! t
2l t
2 , with at least one power

of 1/! t
2 arising from the quark line for the transition q

→qg and another factor of 1/l t
2 arising from the pion wave

function. There are additional factors: 1/! t
2 arises from the

hard fermion line, and 1/! t
4 from the application of Ward

identities and the condition x1" ,x2"#! t
2 . A factor of ! t

2l t
2 is

present in the numerator, with ! t
2 originating from the verti-

ces in the WW representation and l t
2 from the integration

over quark momenta in the pion wave function. All in all this

amplitude is suppressed by the factor l t
2/(! t

2)3. Another case

occurs when l t
2#! t

2 . Then this diagram will be suppressed as

compared to T1 at least by one power of $s without the large

factor ln !t
2/%QCD

2 . But here we restrict ourselves to the

analysis of LO corrections.

Similar reasoning helps to prove that the contribution of

diagrams in Fig. 6 is suppressed by a factor l t
2/! t

2 as com-

pared to that in Fig. 1. This is the power-type suppression if

the pion wave function is non-perturbative, and may be a

NLO $s correction if the perturbative high momentum tail is

included in the pion wave function.

Another contribution to T4 arises from the sum of Feyn-

man diagrams in which the gluon exchange between the q

and q̄ in the beam occurs during the interaction with the

target, see Figs. 8, 9, and 10. The naive expectation is that

such terms, which amount to having a gluon exchanged dur-

ing the very short interaction time characteristic of the two

gluon exchange process occurring at high energies, must be

very small indeed.

The intent of this section is to use the analytic properties

of the scattering amplitude to show that T4 is negligible.

Instead of calculating the sum of the imaginary parts of all of

the amplitudes, we will prove that this sum vanishes by ana-

lyzing analytic properties of the important diagrams. Each

considered diagram contains a product of an intermediate-

state quark and anti-quark propagator. At high energies, these

propagators are controlled by the terms of highest power of

x1 2p•p&!x1" , and 'as to be shown( have poles in the
complex x1 plane which are located on one side of the con-

tour of integration. The sign of the term containing (") in
each propagator unambiguously follows from the directions

of pion and target momenta. If we can show that the typical

integral is of the form

! dx1
1

'$x1""a#i)('*x1""b#i)(
, $ ,*$0

'32(

the proof would be complete.

We now consider the Feynman graphs, starting with Fig.

9. Once again we compute the imaginary part of the graph

and consider the intermediate state as being on the energy

shell. The propagator for the line 'a( has the factor

'k1#z!p&(2"mq
2!z!x1"#••• , '33(

while that of the near-mass-shell line 'b( is independent of
x1, because the quark momenta in the final state and in the

pion wave function are not connected with the target mo-

mentum. The propagator of line 'c( has the factor

'k2#q1(
2"mq

2!x2z"#•••!x1z"#••• . '34(

Here q1 is the momentum of the jet (z ,! t) and ••• denotes
the terms which are independent of x1. The last equation is

obtained from using Eqs. '5(,'7(. The results '33(,'34( show
that the diagram of Fig. 9 takes on the mathematical form of

the integral '32(. Thus this term vanishes.

We also consider the diagram of Fig. 10. In this case there

are three propagators 'a(,'b(,'c( that have a term proportional
to x1" , but the coefficients are not all positive. The propaga-
tor factor for line 'a( is given by

'x1p&#k1(
2!x1z!"#••• , '35(

while that of line 'c( is given by

'k2#q2(
2"mq

2!x2'1"z ("#•••!'1"z (x1"#••• .
'36(

At the same time, the coefficient multiplying x1 in the propa-

gator 'b( 'gluon production( has no definite sign. Thus for

FIG. 7. A time ordering that contributes to T4. The qq̄g state

interacts with the target. Only a single diagram of the eight where a

gluon interacts with quarks in a pion fragmentation region that con-

tribute is shown.

FIG. 8. A contribution to T4b . The target gluon absorbs a gluon

of pion wave function. Only one diagram of the eight that occur is

shown.
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fore leads to the same result for x2. Evidently this result for

x2 is valid in the leading !sln "t
2/#QCD

2 approximation also.

Thus we consider the second situation: l t
2$k1t

2 $" t
2 . In this

case, the initial pion wave function contains a hard quark,

and we discuss hard radiative correction in the next order of

!s . This is the typical situation in which there are extra hard

lines, as compared with the dominant terms, and one obtains

a suppression factor $1/" t
2 which could be compensated by

the d2kt integral. However, this integral does not produce

ln "t
2/#QCD

2 because the region of integration is too narrow.

So this contribution is at most the non-leading-order %NLO&
correction over !s . But we restrict ourselves by the leading-

order %LO& contribution only.
The presence of color flow in the wave function of the

final state leads to the interaction of a target gluon with a

gluon in the wave function of the final state; see Fig. 6. This

term is suppressed by an additional power of 1/" t
2 . The proof

of this statement repeats the same reasoning as that explain-

ing the suppression of the term T1b . It heavily uses the WW

and the Gribov representations, discussed in Sec. II A, and

the identities which follow from the antisymmetry of the

vertex for the three gluon interaction, the color neutrality of

the pion wave function, and the dijet final state. In the deri-

vation it is helpful to use the observation that effectively

!x2!'" t
2/( . Evidently similar reasoning is applicable in com-

puting amplitudes to leading order in !s and all orders in

!sln "t
2/lt
2 .

Repeating the same reasoning as in the estimate of the

terms of T1a ,T1b , and remembering that !x2)" t
2/( we

achieve the estimate T3'!s
2x1GA(x1 ,x2 ," t

2)/" t
4 . It is in-

structive to investigate whether the Feynman mechanism,

where the leading quark %anti-quark& carries a fraction of the
pion momentum z! close to 1 but high momentum jets are

formed by the action of a final state interaction, may compete

with the PQCD description. In this case transverse momenta

of constituents l t in the pion wave function are expected to

be equal to the mean transverse momenta of partons in the

non-perturbative regime. For certainty let us model the Feyn-

man mechanism by assuming that recoil system is quark

%anti-quark& with momentum 1!z! close to 0. Within this
model we will obtain Feynman diagrams for the term T2, but

with the region of integration defined by the Feynman

mechanism. A simple dimensional evaluation of term T3 due

to the Feynman mechanism within the Gribov representation

shows that it is suppressed by the powers of " t . The contri-

bution of the region l t
2/(1!z!)"M 2 jet

2 has been considered

above—it is additionally suppressed for the Feynman mecha-

nism by the restriction of the region of integration over z!.
Thus our next discussion is restricted by the consideration of

the contribution of the region, l t
2/(1!z!)*M 2 jet

2 :

T3'
1

" t
2" +,%z!,l t

2&
1

Mint
2 !M 2 jet

2

% l t&
2

%1!z!&
d2l tdz!. %31&

In the above formulas we use the Brodsky-Lepage conven-

tion for the definition of wave functions and retain terms

maximally singular when z!→1. Power counting is simple:

the factor l t
2/(1!z!)" t

2 is from the gluon exchange in the

final state. The factor l t
2/(1!z!) is singular when z!→1. It

originates from the quark vertexes accompanying the propa-

gator of the gluon exchanged in the wave function of final

state. Here 1/(1!z!) follows from a transition when a frac-

tion of the pion momentum carried by a quark tends to 0.

The factor M 2(2 jet)!l t
2/z!(1!z!) in the denominator is

due the fermion propagator adjacent to the hard gluon ex-

change in the wave function of the final state. Here Mint
2

)(mrec
2 #l t

2)/(1!z!) is the mass of an intermediate state,
and mrec

2 is the invariant mass of the recoil system in the

Feynman mechanism. In the region of integration 1!z!
"l t

2/M 2 jet
2 one may neglect by M 2(2 jet) in the denominator

as compared to l t
2/(1!z!). So one obtains T2

'(1/" t
2)-+,(z!,l t

2)d2l tdz!. In this case, another factor of
1/" t

4 arises from the integration over z!. Hence we have
found that the Feynman mechanism is a higher twist correc-

tion to the PQCD contribution. The Feynman mechanism is

further suppressed by the requirement of a lack of collinear

to pion momentum radiation—see the discussion below.

D. Gluon admixture to the wave functions of initial and final

states—T4

The Feynman diagram corresponding to Fig. 7 contains

the time ordering corresponding to the qq̄g configuration in

the pion wave function interacting with the quarks in the

final state. In taking the imaginary part of the amplitude, the

intermediate state must contain a hard on-shell quark and a

hard on-shell gluon. But such a state cannot be produced by

a soft almost on-shell quark in the initial state, so there is an

additional suppression factor, caused by the rapid decrease of

the non-perturbative pion wave function with increasing

FIG. 5. Contribution to T3a . The high momentum component of

the final qq̄ pair interacts with the two-gluon field of the target.

Only a single diagram of the eight that contribute is shown.

FIG. 6. Contribution to T3b . A gluon from the two-gluon field

of the target interacts with the high momentum component of the

final qq̄ pair wave function. Only a single diagram of the eight that

contribute is shown.

L. FRANKFURT, G. A. MILLER, AND M. STRIKMAN PHYSICAL REVIEW D 65 094015

094015-12

Calculation accounts for energy-momentum conservation, gauge invariance, QCD evolution and asymptotic freedom. 
This is nontrivial since these  properties are often violated in the literature.
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A slightly simplified final answer is 

A(π + N → 2 jets + N)(z, pt, t = 0) ∝

∫
d2dψqq̄

π σqq̄−N(A)(d, s) exp(iptd)

d = r
q
t − r

q̄
t ,

ψqq̄
π (z, d) ∝ z(1 − z)d→0 is the  quark-antiquark Fock component of the 

meson light cone wave function

9



=⇒ A-dependence: A4/3
[

GA(x,k2
t )

AGN(x,k2
t )

]2

, where x = M2
dijet/s. (A4/3 = A2/R2

A)

=⇒ dσ(z)
dz ∝ φ2

π(z) ≈ z2(1 − z)2 where z = Ejet1/Eπ.

=⇒ kt dependence: dσ
d2kt

∝ 1
kn

t
, n ≈ 8 for x ∼ 0.02

=⇒ Absolute cross section is also predicted

What is the naive expectation for the A-dependence of pion dissociation for
heavy nuclei? Pion scatters off a black absorptive target. So at impact
parameters b < RA interaction is purely inelastic, while at b > RA no interaction.
Hence σinel = πR2

A. How large is σel? Remember the Babinet’s principle
from electrodynamics: scattering off a screen and the complementary hole are
equivalent. Hence σel = πR2

A, while inelastic diffraction occurs only due to the
scattering off the edge and hence ∝ A1/3

M.Strikman10



The E-791 (FNAL) data Eπ
inc = 500GeV (D.Ashery et al, PRL 2000)

♥ Coherent peak is well resolved:

Number of events as a function of q2
t , where qt = Σipi

t for the cut Σpz ≥ 0.9pπ.

M.Strikman
11



♥♥ Observed A-dependence A1.61±0.08 [C → Pt]

FMS prediction A1.54 [C → Pt] for large kt & extra small
enhancement for intermediate kt.

For soft diffraction the Pt/C ratio is ∼ 7 times smaller!!

(An early prediction Bertsch, Brodsky, Goldhaber, Gunion 81

σ(A) ∝ A1/3)

In soft diffraction color fluctuations are also important leading to

σsoft diffr(π + A → X + A) ∝ A.7

Miller Frankfurt &S, 93

M.Strikman
12



Recent analysis of D.Ashery (05) D. Ashery, Tel Aviv University

Fit to Gegenbauer Polynomials

Generate Acceptance-Corrected Momentum distributions

Assume dσ
du ∝ φ2

π(u, Q2) in both k⊥ regions

Fit distributions to:

dσ

du
∝ φ2

π(u, Q2) = 36u2(1 − u)2
(

1.0 + a2C
3/2
2 (2u − 1) + a4C

3/2
4 (2u − 1)

)2

For high kt : a2 = a4 = 0 → Asymptotic

For low kt : a2 = 0.30 ± 0.05, a4 = (0.5 ± 0.1) · 10−2 → Transition

Squeezing occurs already  before the leading term (1-z)z dominates!!!  
16

(π wave funct)2

prediction

Squeezing occurs already  before the 
leading term (1-z)z dominates!!!  

Q2(� f.f.) � 4k2
t (jet)

⇐

strong squeezing in π form factor for 
Q2=6 GeV2

13

Caveats - - acceptance corrections for kt <1.5 GeV is large  &  definition jet is poor.

z z

♥♥♥ The z dependence is consistent with dominance of the asymptotic pion
wave function ∝ z(1 − z).

Solid lines - fit: σ(z) ∝ φ2
π(z) ∝ (1 − z)2z2

M.Strikman



=⇒• High-energy color transparency is directly observed.

• The pion qq̄ wave function is directly measured.

Next steps: Measuring three quark component of
the proton wave function in the process
p + A → 3 jets + A (RHIC,LHC)) &

p + p̄ → 3 jets + p (Tevatron collider); and the
photon wave function at EIC.

M.Strikman

♥♥♥♥ k−n
t dependence of dσ/dk2

t ∝ 1/k7.5
t for kt ≥ 1.7GeV/c close to the

QCD prediction - n ∼ 8.0 for the kinematics of E791

M.Strikman

14
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For example, in the case pion and kaon induced exclusive   dijet production  
<latexit sha1_base64="pksqdoYNgqfHAzYxiVnOi/JwhKw="></latexit>

�(K�N)

�(⇡�N)
= 0.7 for total cross section 

<latexit sha1_base64="0dtPfPKaVyGXsNO29+0OL6uGBz8="></latexit>✓
fK
f⇡

◆2

⇠ 1.5Squire of the kaon and pion wf in the origin

To do list theorist’s.   dream

A-dependence aș a function of hardness: A1.6 vs A0.7

t- dependence;   - for  t=0 measures color fluctuations in projectile 

Kaon - pion comparisons

Absolute total ross section 

Minimum - maximum  oscillations pattern as a function of  t 

.

for exclusive dijet production



Important to develop  a toolkit of hadron induced processes which which select  small 
configurations and hence factorizable. Would allow to study GPDs of different hadrons

Natural candidate  - large angle 2➜2 processes.  One of the first applications of CT ideas was to use nuclei 
to test whether pp➜pp,... is dominated by point-like configurations (Brodsky & Mueller, 82).

. Need to account for the evolution of wave package with distance.

Problem: 

16



Important to develop  a toolkit of hadron induced processes which which select  small 
configurations and hence factorizable. Would allow to study GPDs of different hadrons

Natural candidate  - large angle 2➜2 processes.  One of the first applications of CT ideas was to use nuclei 
to test whether pp➜pp,... is dominated by point-like configurations (Brodsky & Mueller, 82).

the lab momenta of produced nucleons are of the order -t/2m - cannot 
treat configurations as frozen up to very large t 

Problem: 
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Important to develop  a toolkit of hadron induced processes which which select  small 
configurations and hence factorizable. Would allow to study GPDs of different hadrons

Natural candidate  - large angle 2➜2 processes.  One of the first applications of CT ideas was to use nuclei 
to test whether pp➜pp,... is dominated by point-like configurations (Brodsky & Mueller, 82).

the lab momenta of produced nucleons are of the order -t/2m - cannot 
treat configurations as frozen up to very large t 

Problem: 

18



Freezing: Main challenge: |qqq> ( |qq>) is not an eigenstate of the QCD Hamiltonian.  
So even if we find an elementary process in which interaction is dominated by small size 
configurations - they are not frozen. They evolve with time - expand after interaction to average 
configurations and contract before interaction  from average configurations (FFLS88)

lcoh~ (0.4- 0.8) fm Eh[GeV]

p
p

p

pA→ pp (A-1) at large t and 
intermediate energies

lcoh

Quantum 
Diffusion model 

of expansion

actually incoherence length

-

e
p

e

eA→ ep (A-1) at large Q

lcoh

19

⇥PLC(z) =
�

⇥hard +
z

lcoh
[⇥ � ⇥hard]

⇥
�(lcoh � z) + ⇥�(z � lcoh)

The same expression with the 
same parameters describes 
production of leading hadrons
 in DIS - U.Mozel et al 

| PLC(t)i =
1X

i=1

ai exp(iEit) | it)i = exp(iE1t)
1X

i=1

ai exp

✓
i(m2

i �m2
1)t

2P

◆
| it)i



Idea is to consider new type of hard hadronic processes - branching exclusive  processes of large 
c.m.angle scattering on a “cluster” in a target/projectile (MS94)                         

t’
d

c

b

a

et

s’=(pd+pc)2
-t’ > few GeV2, -t’/ s’ ~1/2 
-t=const ~ 0 
  ➠  s’/s<<1

Limit:

First two quantitative evaluations  of  pp—> pN pi, Kumano, MS, and Sudoh PRD 09; Kumano &MS Phys.Lett. 
10

2 →3 branching processes: 

test onset of CT for 2 →2  avoiding freezing effects  

measure cross sections of large angle pion - pion (kaon) scattering

probe 5q in nucleon and 4q in mesons

measure GPDs of nucleons,  mesons and photons(!)

☀

☀
☀
☀

measure transverse sizes of b, d,c ☀

2 →3 branching processes: new direction in probing GPDs and CT

20



Factorization:

GPD

N

t ’b
d

e (baryon)

c (meson)

t t

e (meson)N

GPD

t ’b d

c (baryon)

If the upper block is a hard (2 →2 ) process,   “b”, “d”, “c” are in small size configurations as well as exchange 
system (qq, qqq). Can use CT argument as in the proof of QCD factorization of  meson  exclusive production 
in DIS (Collins, LF, MS 97)

⇓

MNN�N�B = GPD(N ⇥ B)� �i
b �H � �d � �c

21
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π

B

p

p

cohl

Minimal condition for factorization:
lcoh > rN � 0.8 fm

lcoh = (0.4 ÷ 0.6 fm) · ph/(GeV/c)
pc ⇥ 3÷ 4 GeV/c, pd ⇥ 3÷ 4 GeV/c

pb ⇥ 6÷ 8 GeV/c
Much easier to reach the regime of freezing than in CT reactions with nuclei

Time evolution of the 2 → 3 process

22



NP M

P

P P

P

P P

!
qqqqq

,Δ, N*

,Δ, N* , ρ,η, ϕ

, Δ, N*

, Δ, N*

Λ,Σ

K,K*

N
P

M

P

P
P

P

P
P

!
q
q

q
q
q

-t/s’~1/2

-t=const

GPD 
(N→M)

π π

GPD (N→B)

Examples

��p� �����++, ��p� ���+�0, ��p� ���0p,

AMBER / COMPASS has veery good momentum resolution (hence good 
missing mass resolution)  - so a recoil / veto detector may   not  be necessary

Advantage - CT for pions is observed, easier to squeeze pions. Measurements at small t - close 
to pion pole can normalize GPDs and determine elastic π- π- , π- π+, π- π0 cross sections

23

Similar for Kaon beams



How to check that squeezing takes place and one can use GPD logic?

Use as example process π-A→π-π± A*

pf(π) = pi(π)/2, vary pft(π) = 1 - 2 GeV/c; pft(π-)+ pft(π±) ~ 0

c
b

d

A

lcoh=60 fm

π-
π-

π±

Branching (2→3) processes with nuclei - 
freezing is 100% effective for pinc > 100 
GeV/c - study of one effect only - CT due to 
squeezing of the size of fast hadrons

☀ easier to squeeze

☀ COMPASS 190 GeV data on tape

☀ Early data from FNAL

24



TA =
d⇥(��A����+A⇥)

d�

Z d⇥(��p����+n)
d�

TA( pb,  pc,  pd) =
1
A

�
d3r�A( r)Pb( pb, r)Pc( pc, r)Pd( pd, r)

where                     are three momenta of the incoming  and outgoing 
particles b, c, d; ρA is the nuclear density normalized to

⇤pb, ⇤pc, ⇤pd �
�A(⇧r)d3r = A

Pj( pj , r) = exp
�
�

⇤

path
dz ⇥e�( pj , z)�A(z)

⇥

0.03

0.1

1

10 100 30020 50 200

A

5 mb

10 mb

15 mb
20 mb

T 
(A

)

σeff = 25 mb

Large effect even if the pion 
radius is changed just by 30%

If there are two scales in pion (Gribov)  
- steps in T(ktπ) as a function of ktπ

If squeezing is large enough can measure quark- antiquark size using dipole - nucleon cross section 

25



⇤(d, x) =
⇥2

3
�s(Q2

eff )d2

�
xGN (x, Q2

eff ) +
2
3
xSN (x, Q2

eff )
⇥

If squeezing is large enough one can measure quark- antiquark size using dipole - nucleon
 cross section which I discussed before 

26



Defrosting point like configurations - energy dependence for fixed s’,t’

Use lcoh~ 0.6 fm Eh[GeV]

Quantum 
Diffusion model 

of expansion⇥PLC(z) =
�

⇥hard +
z

lcoh
[⇥ � ⇥hard]

⇥
�(lcoh � z) + ⇥�(z � lcoh)

which describes well CT for pion electroproduction

c
b

d

c
b

d

0.7

0.8

0.9

1

1.1

20 100 30050 200

p
    
(GeV/c)

R
 =

 T
(p

  ,
x

= 
0.

2)
 /

T(
p 

 ,
x

= 
0.

5) 1

A = 12
40

208

π

π
π

x = pfin
⇡ /pin

⇡

x=0.5
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��p⇥ ��p + (�0�0 � forward low pt)

28

NP M

P

P P

P

P P

!
qqqqq

,Δ, N*

,Δ, N*
, ρ,η, ϕ

, Δ, N*

, Δ, N*

Λ,Σ

K,K*

N
P

M

P

P
P

P

P
P

!
q
q

q
q
q

-t/s’~1/2

-t=const

GPD 
(N→M)

π π

GPD (N→B)

pp� p� + M(⇥, �, ⇥⇥)

pp� p� + K+

��p� p� + M

��p� �����++,

��p� ���+�0,

pp� pN + M(⇥, �,⇥⇥)

��p� ���0p,

COMPASS

Examples

J-PARC  if  beams of pions 
with energies 20 -40 GeV 

are doable 



Study of Hidden/Intrinsic Strangeness & Charm in hadrons

pp →Λsp (any other strange baryon)+ K+(K*) + p 

pp → φsp + p + p
pp →Dsp +  Λc+ p 

pp → K(K*)sp + Λ + p

π+p →K+sp +  K0+p 

BNL experiment: EVA has few candidate events
_

Can one use hadronic projectiles to study  baryo/meso baryonic 

and meso-mesonic  GPDs? Will be especially beneficial to study in parallel 

with 12 GeV program at Jlab (GPD studies is the main trust of their program)

Idea (MS95) is to consider new type of hard hadronic processes - 
branching exclusive  processes of large c.m.angle scattering on a 

“cluster” in a target/projectile or  scattering of two small clusters 

NP M

P

P P

P

P P

!
qqqqq

,!, N*

,!, N*
, ",#, $,gluonium

, !, N*

, !, N*

%,&

K,K*

p

p

pp

Meson

Meson

Baryon

Baryon

N
P

M

P

P
P

P

P
P

!
q
q

q
q
q

-t/s’~1/2

N PM

P

PP

P

PP

!
qq qqq

s’

Could a gluonium be left 
behind when  three quarks in 
a nucleon come close and 
instantaneously removed

NP M

P

P P

P

P P

!
qqqqq

NP M

P

P P

P

P P

!
qqqqq

Λ

p

K+,K+*

Can one use hadronic projectiles to study  baryo/meso baryonic 

and meso-mesonic  GPDs? Will be especially beneficial to study in parallel 

with 12 GeV program at Jlab (GPD studies is the main trust of their program)

Idea (MS95) is to consider new type of hard hadronic processes - 
branching exclusive  processes of large c.m.angle scattering on a 

“cluster” in a target/projectile or  scattering of two small clusters 

NP M
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P P
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P P
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qqqqq
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, ",#, $,gluonium
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%,&
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Meson

Baryon
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P

P

P
P

!
q
q

q
q
q

-t/s’~1/2
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P

PP

P

PP

!
qq qqq

s’

Could a gluonium be left 
behind when  three quarks in 
a nucleon come close and 
instantaneously removed

NP M

P

P P

P

P P

!
qqqqq

NP M

P

P P

P

P P

!
qqqqq

Λ

p

K+,K+*

_ 
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use of polarized beams and/or targets

pp →Λsp (any other strange baryon)+ K+(K*) + p
→ →

pp → K+(K*)sp  +Λ(any other strange baryon)+ p
→

→
→

pp →Δsp (any other strange baryon)+ meson + p
→→

study of the NΔ GPDs -  more GPDs than for NN case - QCD chiral model - selection rules; single 
transverse spin asymmetries
   Frankfurt, Pobilitsa, Polyakov, MS 98

Can one use hadronic projectiles to study  baryo/meso baryonic 

and meso-mesonic  GPDs? Will be especially beneficial to study in parallel 

with 12 GeV program at Jlab (GPD studies is the main trust of their program)

Idea (MS95) is to consider new type of hard hadronic processes - 
branching exclusive  processes of large c.m.angle scattering on a 

“cluster” in a target/projectile or  scattering of two small clusters 
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qqqqq
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P

P
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Could a gluonium be left 
behind when  three quarks in 
a nucleon come close and 
instantaneously removed
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P
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qqqqq

Study of the spin structure of the nucleon



NP M

P

P P

P

P P

!
qqqqq

p
π0

γ

p

γ,π0

↵⇡ = (E⇡ � p(3)⇡ )/mp

s0 = (1� ↵⇡)s

Slow pion corresponds to large s’ and hence allows large t for a large range of c.m. angles for Eγ ~10 GeV

Small probability of πΝ is to some extent compensates by smaller s’ since 

Remark: αγ=0 simplifies using photon beam without tagging

A-dependence - large longitudinal momenta of p &π0→  CT effects significant for fixed απ and with 
increase of proton pt .

��N!⇡N / (s0/s)�7

Very interesting channel: � + p ! ⇡0 + p+ (⇡0⇡0),M⇡0⇡0 < 600MeV

� + n ! ⇡� + p+ (⇡0⇡0),M⇡0⇡0 < 600MeV
σ’s?

31

Recent studies by Qiu et al,

Szymanowski, Pire



Other interesting channels

NP M

P

P P

P

P P

!
qqqqq

p K+

γ

Σ+

π-

NP M

P

P P

P

P P

!
qqqqq

n π-

γ

p

π-
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Can one use hadronic projectiles to study  baryo/meso baryonic 

and meso-mesonic  GPDs? Will be especially beneficial to study in parallel 

with 12 GeV program at Jlab (GPD studies is the main trust of their program)

Idea (MS95) is to consider new type of hard hadronic processes - 
branching exclusive  processes of large c.m.angle scattering on a 

“cluster” in a target/projectile or  scattering of two small clusters 

NP M
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P P

P

P P

!
qqqqq

,!, N*
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, ",#, $,gluonium
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M
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P

P

P

P

P
!

q
q

q
q
q

-t/s’~1/2

N PM

P

PP

P

PP

!
qq qqq

s’

Could a gluonium be left 
behind when  three quarks in 
a nucleon come close and 
instantaneously removed

NP M

P

P P

P

P P

!
qqqqq

NP M

P

P P

P

P P

!
qqqqq

Four quark component in real photon

qq̄

π(meson)  with large longitudinal momentum and small 
ptγ

meson  with large longitudinal momentum and large kt

N Baryon with pt ~ -kt
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A detailed theoretical study of the reactions pp→NNπ,  NΔπ was recently  completed. 
Factorization  based on squeezing

Kumano, Strikman, and Sudoh 09

NP M

P

P P

P

P P

!
qqqqq

NP M
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P P

P

P P
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qqqqq
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P
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!
qqqqq

NP M

P

P P

P

P P

!
qqqqq

Δ++

π-

pp

p
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Strategy of the first numerical analysis: 

●

Approximate the ERBL configurations by the pion and ρ-meson poles 

 account for contributions of GPDs corresponding to
 qq pairs with S=1 and 0

_

●

●

Use experimental information about 

π- p→ π- p,  π- p →ρ- p 
π+ p→ π+ p,  π+ p →ρ+ p 

much better data are necessary 
for beams of energies of the order 

10 GeV - J-PARC!!!
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d⇤ = S

4
⇧

(pa·pb)2�m4
N

�
�a,�b

�
�d,�e

|MNNN⇥B |2

⇥ 1
2Ec

d3pc

(2⇥)3
1

2Ed

d3pd

(2⇥)3
1

2Ee

d3pe

(2⇥)3 (2⇥)4�4(pa + pb � pc � pd � pe)

d⇤

d�d2pBT d⇥cm
= f(�, pBT )⌅(s�, ⇥cm)

s� = (1� �)s

⇤(s�, ⇥cm) � (s�)n
�(⇥cm)

↵ ⌘ ↵spec = (1� ⇠)/(1 + ⇠)
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N →Δ transitions
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��(z) =
⇥

3f�z(1� z),
�⇥(z) =

⇥
6f⇥z(1� z).
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d⇤NN�N�B
dt dt⇥ =

⇥ ymax

ymin
dy s

16 (2⇥)2 mN pN

�
⇤

(ys�t�m2
N )2�4m2

N t
(s�2m2

N )2�4m4
N

d⇤MN�N (s⇥=ys,t⇥)
dt⇥

�
�

�a, �e

1
[⌅M (z)]2 |MN⇥B |2

y ⇥ s�

s
=

t + m2
N + 2(mNEN � EBEN + pBpN cos �e)

s
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Same cross section for antiproton projectiles!

Large enough cross sections to be measured with modern detectors
Strong dependence of σ on proton transverse polarization (similar to DIS case of pion 
production  Frankfurt, Pobilitsa, Polyakov, MS  ) 41



Yet another direction  - QCD for non vacuum exchanges 

 — complementary to BFKL Pomeron

42



pQCD - quark exchange is reggeized  (Fadin and Sherman 1976,  
                                                                       Bogdan and Fadin and 2006)

Important property of quark regge trajectory in pQCD 
 αq(t) - weak dependence on t

43

Quark exchanges in pQCD via two body processes

pQCD Reggeons



For quark antiquark exchange:   A ∝ s 2αq(t)-1

For three quark exchange:   A ∝ s 3αq(t)-2

↓
Relation between effective baryon and quark trajectories at large t

αN(t)= 3αM(t)/2-0.5

From Azimov displacement relation

44



reaction  ⇥�p� � + nreaction ��p� �0 + n

αM(-t > 1 GeV2) = -(0.2÷0.4)

αB(-t > 1 GeV2) = -(0.8÷1.1)

↓
αq(-t > 1 GeV2) = (0.3÷0.4)
as compared to nonreggeized 

case of 0.5 - reggeization effect 
is rather small
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B
B

M (π,η,..)γ*

46

Energy range of  meson beams of Amber is wide enough to study variation with  

energy of cross section for fixed t, At EIC Q dependence can be studies as well.

γ(γ*)



A broad  program  of hadronic physics studies hard / semihard reactions are feezible   

at Jparc, with Amber,  PANDA, and in a long run  at the EIC.

47

high energy CT for hadronic processes

Conclusions

3D  structure of hadrons -   GPDs

Quantum diffusion  for a multitude of hadrons

color fluctuations in hadrons

Discovery potential:
✺✺

✺

✺

✺

✺

✺



Backup

48



2→ 3 processes:  γ* +N → VM + gap + meson + baryon 

γ* V

p N

π M�N �M� + MN

(also pions + qq exchange - 
dominate for x>0.1)

-

detailed analysis of chiral limit  - low mass Nπ- Polyakov and Stratmann 06
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Vector meson diffractive production: Theory and HERA data

Space-time picture of Vector meson production at small x in the
target rest frame

(d)

i

γ

>>

t
2k

z(1-z)2Q

x
N

m

1
=

fx
N

m

1
=

i

L

T

γ d
*

q

q

V

l l l

σ
Vγ

ψψ

⇒ Similar to the π + T → 2jets + T process, A(γ∗
L + p → V + p) at pt = 0

is a convolution of the light-cone wave function of the photon Ψγ∗→|qq̄⟩, the
amplitude of elastic qq̄ - target scattering, A(qq̄T ), and the wave function of
vector meson, ψV : A =

∫

d2dψL
γ∗(z, d)σ(d, s)ψqq̄

V (z, d).

M.Strikman
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large t - color transparency  limit 

“π N”

Abramowicz, F,S 95

γ* V

p
B

M

t

Weiss , MS 03
Enberg, Pire, Szymanowski et al 02 &06

large t pion GPD

“ρ N” from ρ polarization - 
transversity GPD of 

nucleon 

Evidence for CT in pion production at Jlab ⇒ -t > 3 GeV2  sufficient

“K Λ”  - probe strange quarks in 
nucleons  specially for Stan⇥p
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Typical pQCD 
diagrams for elastic 

pp scattering

Early QCD approach (Brodsky - Farrar - Lepage)  
Lowest order pQCD diagrams for form factors, two body processes involving all 
constituents

p p’
H exchange of gluons between all three quarks

So far we do not understand the origin of the most fundamental hadronic processes in pQCD -large 
angle two body reactions (-t/s=const,  s) π +p → π +p, p +p → p +p,... and even form factors

d⇥

d�c.m.
= f(�c.m.)s(�

P
nqi�

P
nqf

+2) Indicates dominance of minimal Fock components of small size:

r2transverse / 1/Q2
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Indicates dominance of minimal Fock components of small size?

Describes regularities of studies hadronic reactions  pretty well

n-2=8

n-2=10

Puzzle - power counting roughly works  for many large angle processes- they  do not look 
as soft physics - quark degrees of freedom are relevant.

n-2=8

n-2=8
n-2=8
n-2=8

n-2=10

n-2=8

n-2=8
Reactions 

where quark 
exchanges are 
allowed have 
much larger 

cross sections 

However absolute values of say form factors  are too small, 
large angle Compton  expectations contradict the data, etc 
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Do these regularities indicates dominance of minimal Fock components of small size?

Theory (A.Mueller et al 80-81) - competition between diagrams corresponding to the 
scattering in small size  configurations and pinch contribution (Landshoff diagrams)

⇡+

⇡+ ⇡+ ⇡+ ⇡+

⇡+ ⇡+

u

u

d̄

d̄

1

s6

1

s5
+ Sudakov logarithm 
   suppression of large     
size configurations ! 1/s6

??


