

Radiation protection assessment of the AMBER Drell-Yan program

<u>C. Ahdida</u>, A. Devienne, V. Andrieux, D. Banerjee, J. Bernhard, S. Cholak, C. D. Da Rocha Azevedo, O. Denisov, A. Gerbershagen, S. Girod, F. Malacrida, P. M. Mendes Correia, F. Metzger, M. Quaresma, C. Quintans, M. Van Dijk, H. Vincke, P. Vojtyla

PAW'24, 18-20 March 2024

Overview

1. RP principles

justification, limitation, optimization

2. COMPASS Drell-Yan runs past limitations

3. AMBER design optimization

prompt and residual radiation, air activation, environmental impact

General Principles of Radiation Protection

ICRP recommends the international guidelines, which are transcribed into law on European and national level

Justification Any exposure of persons to ionizing radiation has to be justified

Limitation The personal doses have to be kept below the legal limits

Optimization The personal doses and collective doses have to be kept as low as reasonably achievable (ALARA)

Limitation at CERN – Safety Code F

Occupationally exposed persons (Radiation Workers)

- 3.2.1 The effective dose received in any consecutive 12-month period by any occupationally exposed person must not exceed 20 mSv.
- 3.4.1 All occupationally exposed persons are classified in one of two categories:
 - a) Category A: persons who may be exposed in the exercise of their profession to more than 3/10 of the limit in terms of effective dose in 12 consecutive months.
 - b) Category B: persons who may be exposed in the exercise of their profession to less than 3/10 of the limit in terms of effective dose in 12 consecutive months.

Not occupationally exposed persons

3.2.3 The effective dose received in any consecutive 12-month period by persons not occupationally exposed must not exceed 1 mSv.

Environment (Public)

4.2.1 The effective dose resulting from CERN's activities received by any person living or working outside the site boundaries must not exceed 0.3 mSv per year. This limit includes both external and internal exposure, the latter resulting from the intake of radioactive releases.

Yearly limit

A: 20 mSv/12 months (*) B: 6 mSv/12 months (*)

(*) Age 16-18: 6 mSv/12 months, Pregnant women: 1 mSv during pregnancy

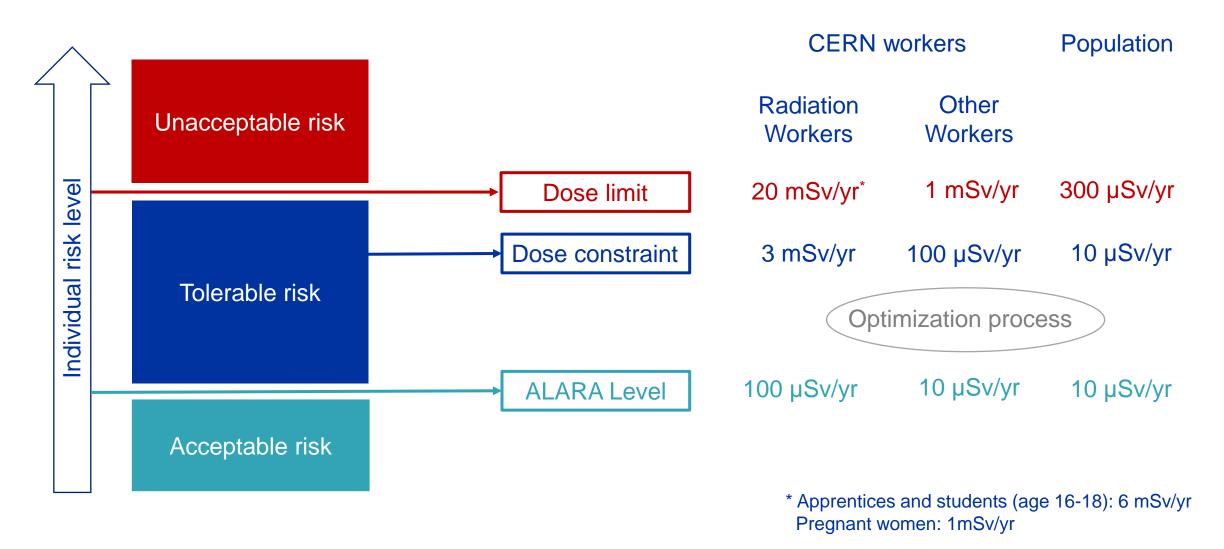
1 mSv/12 months

0.3 mSv/12 months

https://edms.cern.ch/ui/file/335729/LAST_RELEASED/F_E.PDF

General Principles of Radiation Protection

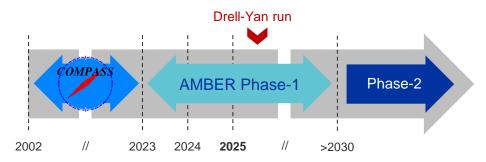
ICRP recommends the international guidelines, which are transcribed into law on European and national level


Justification Any exposure of persons to ionizing radiation has to be justified

Limitation The personal doses have to be kept below the legal limits

Optimization The personal doses and collective doses have to be kept as low as reasonably achievable (ALARA)

Dose Optimization at CERN

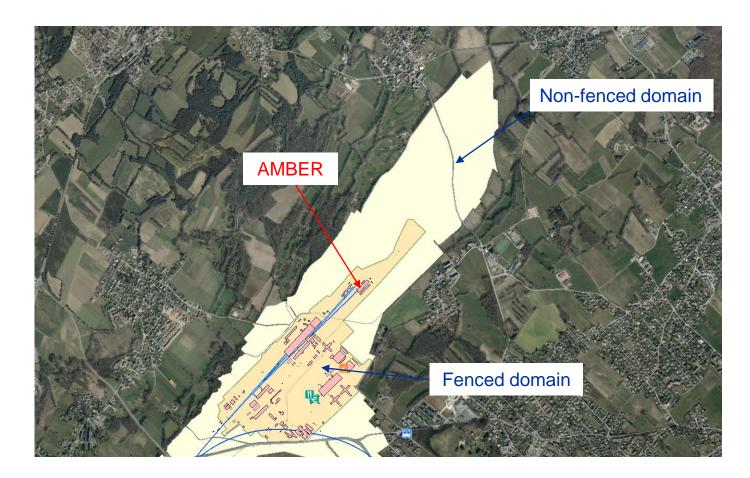

PAW'24, 18-20 March 2024

AMBER at EHN2

AMBER Phase-1 Program

- Antiproton production cross section measurement
- Proton radius measurement
- Pion-induced Drell-Yan measurements
- From the RP point of view, the Drell-Yan measurement is the most critical in view of a highintensity beam used
- Past COMPASS Drell-Yan runs (2015, 2018) reached a yearly maximum of 1.83×10¹⁴ POT (+68% for AMBER), while causing increased radiation levels

Timeline

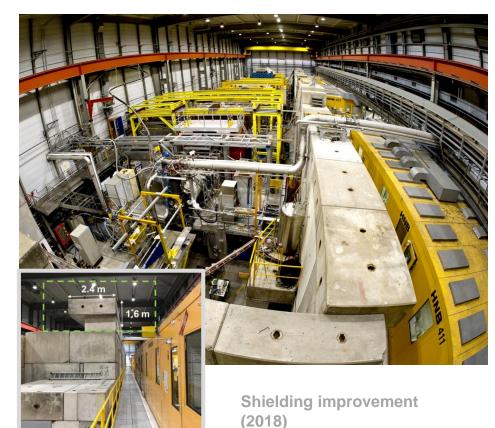


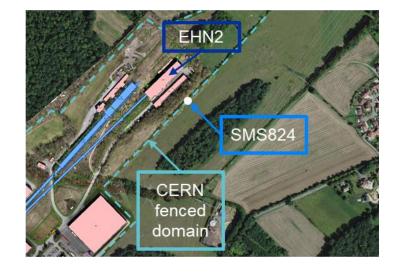
Key beam parameters for AMBER Drell-Yan program

Momentum	190 GeV/c
Particle type	π -
Beam intensity on target / spill	1×10 ⁹
Spill duration	4.8 s
Cycle length	15 s
Yearly particles on target (POT)	3.07×10 ¹⁴

CERN Prévessin site – EHN2

1 mSv/year ambient dose equivalent limit at the CERN fence


Effective dose to members of the public to remain below CERN's dose objective of 10 μSv/year


PAW'24, 18-20 March 2024

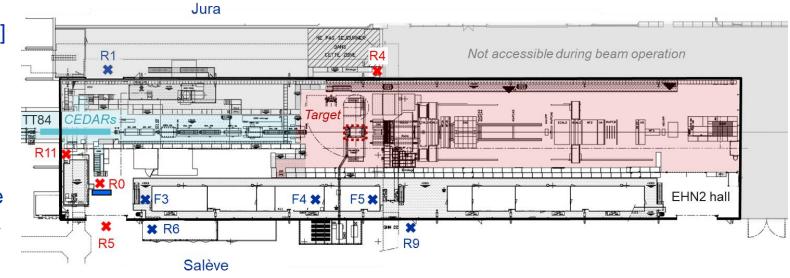
COMPASS Drell-Yan – Annual dose at CERN fence

COMPASS target area (2015)

Location of environmental monitoring station SMS824

- The environmental monitoring station SMS824 (n, γ) is located at the CERN fence close to EHN2
- Shielding improvement around the COMPASS target area was challenging due to polarized target infrastructure

	2015 run	2018 run
POT/year	1.67 × 10 ¹⁴	1.83 × 10 ¹⁴
Annual dose at fence	745 µSv	756 µSv


> 75% of the annual limit of 1 mSv at the CERN fence was reached

COMPASS Drell-Yan – Dose rates at EHN2

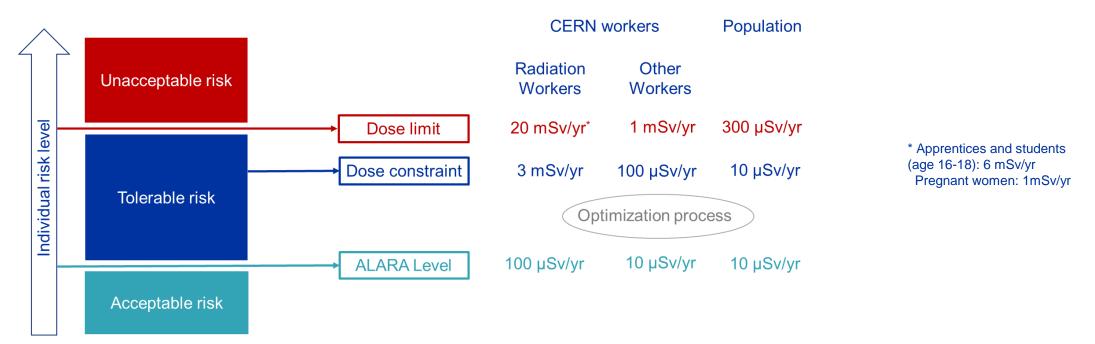
- Radiation surveys inside/around EHN2 were performed during the 2018 Drell-Yan run [1,2]
- Elevated dose rates at several locations
- Dose rates on Jura side above the limit of a Supervised Radiation Area (15 µSv/h)
 → prevent access during beam operation
- Dose rates on Salève side inside and outside of EHN2 were exceeding or close to the area classification limits at several locations
 - \rightarrow increased dose rates at upstream part of EHN2 hinting to losses in the beamline
 - \rightarrow local shielding improvement with 80 cm concrete at position R0 only partially helped
- Shielding improvement required particularly in the beamline region

Measurement positions of 2018 radiation survey

Measured dose rates at critical positions

Position	R4	R0	R11	R5
Dose rate (µSv/h)	45	15	16	4 (3*)
Limit (µSv/h)	-	15	15	2.5

*w/ additional shielding



AMBER design optimization

• Shielding improvement at strategic EHN2 locations to cope with future high-intensity AMBER Drell-Yan runs

ALARA approach

Optimization required to ensure that exposure of personnel to radiation and radiological impact on environment are As Low As Reasonably Achievable

Dose optimization at CERN

AMBER design optimization

• Shielding improvement at strategic EHN2 locations to cope with future high-intensity AMBER Drell-Yan runs

ALARA approach

Optimization required to ensure that exposure of personnel to radiation and radiological impact on environment are As Low As Reasonably Achievable

PROMPT RADIATION

Reduce prompt radiation to comply with **radiation area classification** inside/next to EHN2 as well as the **1 mSv limit** at the **CERN fence**

RESIDUAL RADIATION

Limit activation of experimental area and assess residual radiation in target area for defining adequate **area classification** and **access requirements**

AIR ACTIVATION

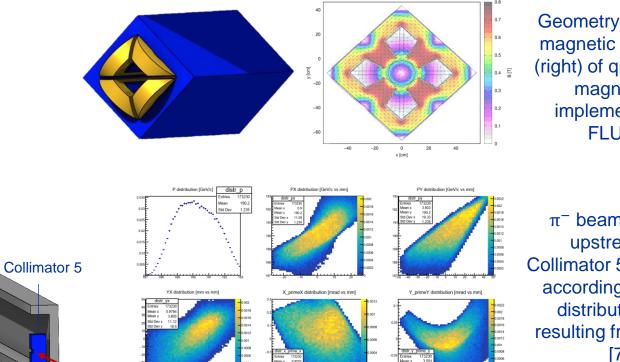
Reduce activation of air and ensure compliance with **airborne activity concentration** limits of given area classification

ENVIRONMENTAL IMPACT

Reduce environmental impact from skyshine radiation and releases of activated air to fulfill CERN's **dose objective** for the **public** of **<10 uSv/year**

Radiation area classification

	Area	Annual dose limit (year)	Ambient dose equivalent rate				Airborne activity concentration	Surface contamination	
		0	permanent occupancy	• • •					
	Non-designated	1 mSv	0.5 µSv/h	2.5 µSv/h	0.05 CA	1 CS			
	Supervised	6 mSv	3 μSv/h	15 µSv/h	0.1 CA	1 CS			
Area	Simple Controlled	20 mSv	10 µSv/h	50 µSv/h	0.1 CA	1 CS	ea.		
Radiation Area	Limited Stay	20 mSv	-	2 mSv/h	100 CA	4000 CS	led Area		
Radi	High Radiation	20 mSv		100 mSv/h	1000 CA	40000 CS	Controlled		
	Prohibited						ŭ		

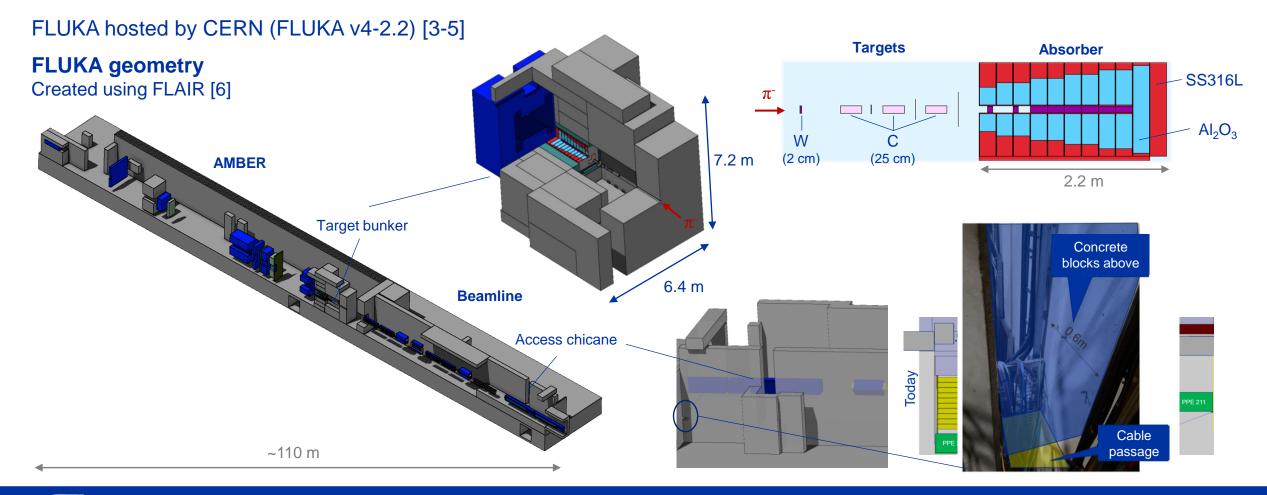


FLUKA model of AMBER – Beamline

Quadrupole

FLUKA hosted by CERN (FLUKA v4-2.2) [3-5]

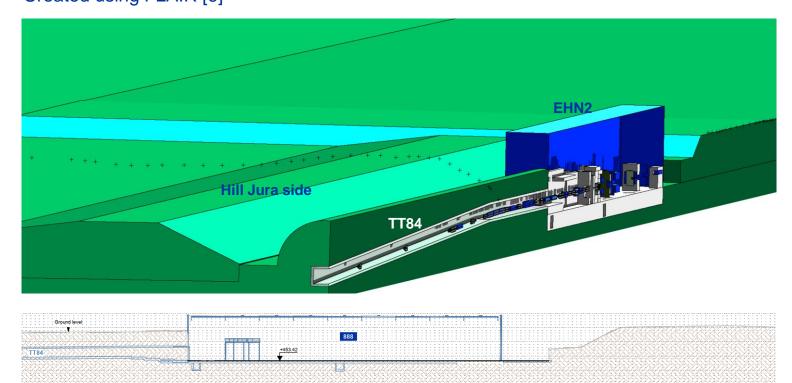
FLUKA geometry Created using FLAIR [6] EHN2 CEDAR (He @ 10.5 bar) Scrapers **Bends TT84** The full beamline starting from Collimator 5 with its magnets and respective magnetic fields were incorporated in the model


Geometry (left) and magnetic field map (right) of quadrupole magnet as implemented in **FLUKA**

 π^- beam starting upstream of Collimator 5 simulated according to beam distributions as resulting from HALO [7]

~270 m

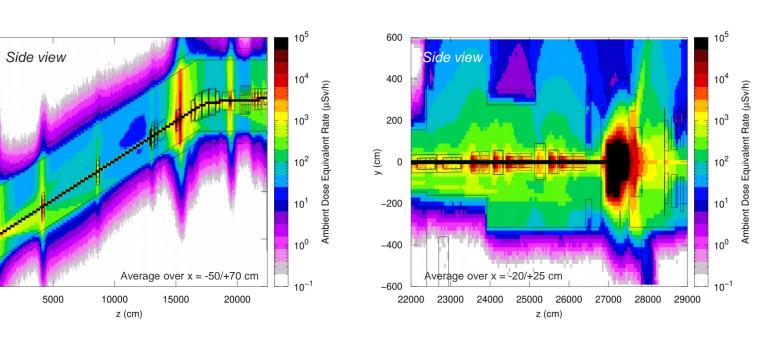
FLUKA model of AMBER – EHN2



FLUKA model of AMBER – Surroundings

FLUKA hosted by CERN (FLUKA v4-2.2) [3-5]

FLUKA geometry Created using FLAIR [6]


Ground profile data from CERN's Geographic Information System and technical drawings were used to model the surrounding ground

The above-ground air volume reaches up to 5 km in height

Results – Prompt radiation in beamline

Transfer Tunnel TT84 From Collimator 5 to CEDAR

Beamline in EHN2 From CEDAR to target bunker

- Prompt ambient dose equivalent rates in the beamline were evaluated with an intensity of $1 \times 10^9 \pi^-$ /spill and 240 spills/h on target
- Main streaming towards the top from downstream region of target bunker but also from beamline region
- Beam losses from Collimator 5 up to the target amount to 11.8%
- Less than 1% beam losses from CEDAR up to target

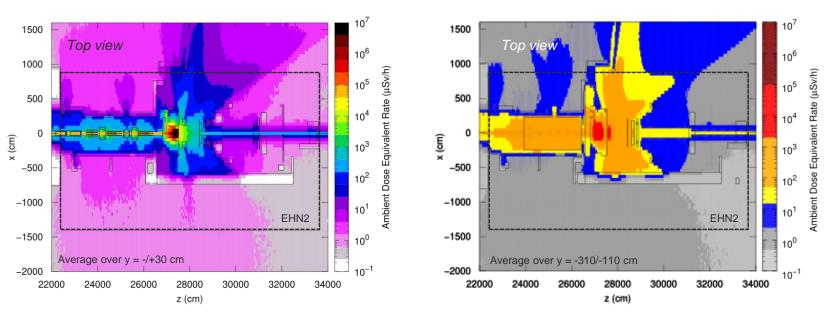
> Beam losses upstream of the target taken into account in normalization for pions on target

200

0

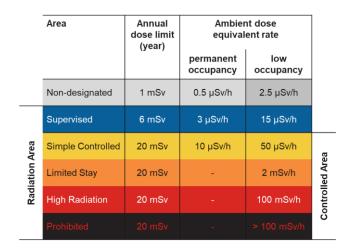
-200 (cm)

-400

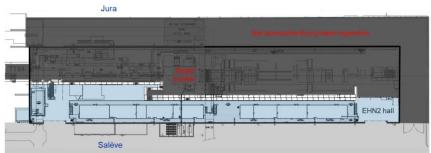

-600

-800

Results – Prompt radiation at EHN2


Color scale according to area classification

Prompt dose rate inside and next to EHN2 $1 * 10^9 \pi^-$ /spill and 240 spills/h on target



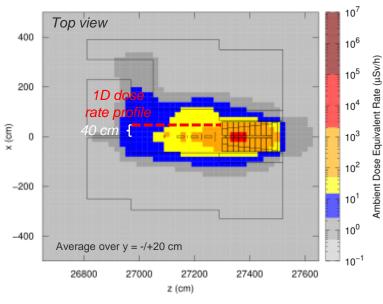
Additional shielding allowed significant improvement of the dose rates in the accessible areas inside/next to EHN2 well within the respective area classification limits

Radiation area classification

EHN2 area classification

Results – Residual radiation

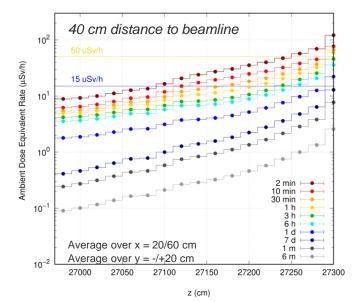
Irradiation profile 6-month irradiation with overall 3.07×10¹⁴ POT/year


Decay times

2 min, 10 min, 30 min, 1h, 3h, 6h, 1d, 3d, 1w, 1month, 6 months and 1 year

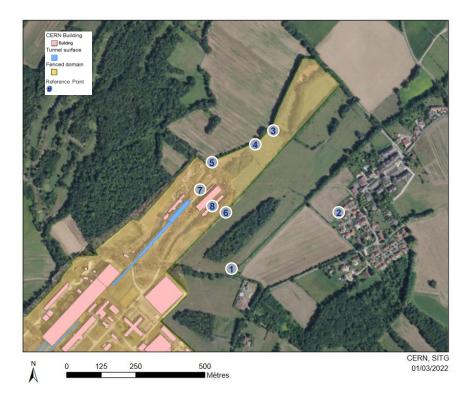
- Dose rates above Supervised Radiation Area limit for <1 day decay and Simple Controlled Area limit for < 10 min decay
- Access mostly during commissioning time with low intensity
- Installation of a PMI to monitor residual dose rate inside the bunker before access

Residual dose rate in target bunker


2 minutes cooling (min. time from access system)

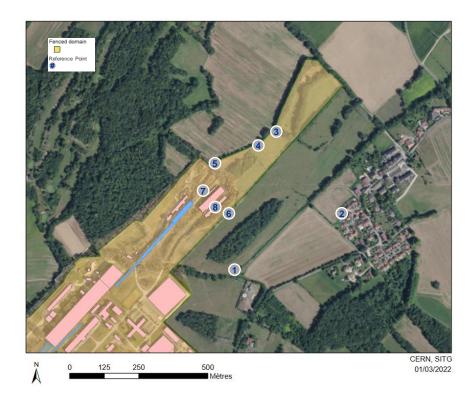
Radiation area classification

	Area	Annual dose limit		equivalent rate		
		(year)	permanent occupancy	low occupancy	2	_
	Non-designated	1 mSv	0.5 µSv/h	2.5 µSv/h		
	Supervised	6 mSv	3 μSv/h	15 µSv/h	Dosimeter obligatory Dosimetre obligatore	
Area	Simple Controlled	20 mSv	10 µSv/h	50 µSv/h	SIMPLE CONTROLLED / CONTRÔLÉE SIMPLE Dosimeter obligatory Dosimiter obligatore	a
Radiation Area	Limited Stay	20 mSv	-	2 mSv/h	LIMITED STAY / SÉJOUR LIMITÉ Dosimeters obligatory Dosimetres obligatores	ed Area
Radi	High Radiation	20 mSv		100 mSv/h	HIGH RADIATION / HAUTE RADIATION Dosimeters obligatory Dosimetres obligatores	Controlled
	Prohibited	20 mSv	-	> 100 mSv/h	NO ENTRY DÉFENSE D'ENTRER	Ö


Different cooling times

Results – Skyshine radiation

Aerial view of CERN domain and surroundings


Selected reference points

 Garden Residential area 	- Locations outside CERN fenced area
 PMS823 PMS822 PMS821 PMS824 	Monitoring stations at CERN fence
 Jura Side Top Hill Road Salève 	Non-designated area (low occupancy) inside CERN fenced area

Results – Skyshine radiation

Aerial view of CERN domain and surroundings

Annual dose for 3.07×10¹⁴ π^- /year on target (µSv/year) Statistical uncertainty < 10%

Reference point	Name	Annual dose (µSv/year)⁺		Occupancy factor	Dose objective / limit	
	-	Full Source	Only Target		-	
1	Garden	1	0.7	0.06	10 0 (
2	Residential Area	2	1	1	<10 uSv/y	
3	PMS823 (Down)	7	4	-	1 mSv/y	
4	PMS822 (Mid)	17	10			
5	PMS821 (Jura)	105	70			
6	PMS824 (Salève)	258	165			
7	Jura Side Hill	29	24	0.05*	1 m Cultu	
8	Road Salève	53	48	0.05*	1 mSv/y	

+ Including occupancy factor

*Low occupancy workplace (20% of permanent workplace occupancy factor of 0.23)

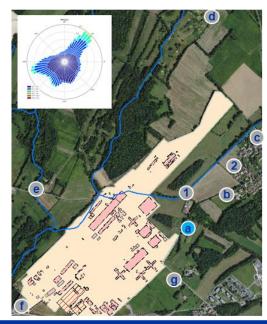
Annual dose well within the respective limits and dose objective for the public

Results – Air activation

Air activation assessment

- Air activation was evaluated for AMBER target bunker area and the rest of the EHN2 hall
- 6-month irradiation with overall 3.07×10¹⁴ POT/year
- Production of radionuclides evaluated with FLUKA in combination with ActiWiz [8]
- Neither decay time nor air extraction were conservatively assumed
- Airborne activity well within limit (< 0.1 CA¹) for the target bunker and EHN2 hall

Environmental impact assessment


- Conservative assumption of immediate release on the EHN2 roof
- Used max. dose coefficients from different age groups [9]
- Exposure of members of the public due to air releases below 1 nSv/y (negligible)

 1 Person working 40h/w, 50w/y with standard breathing rate in activated air with CA = 1 receives 20 mSv

Air activation per air region

Air region	Total activity concentration	Multiple of CA ¹	Inhaled dose for 1 hour of stay
Target bunker	1 kBq/m ³	2E-02	0.02 µSv
EHN2 hall	2 Bq/m ³	3E-05	<< 1 µSv

Positions of the examined population groups

Total activity for immediate release

Total activity
8.2 GBq
0.2 0 2 9

Effective dose – worst case – group a Main radionuclides (>98% contribution)

tal)
)
)
)
)

Radiation Protection challenges for AMBER

- High-intensity Drell-Yan program
- Aboveground experimental hall EHN2 with limited shielding located close to the CERN fence
- Previous COMPASS Drell-Yan runs of lower intensity revealed shielding weaknesses

AMBER design optimization

• Shielding improvement to optimize prompt and residual radiation, air activation and environmental impact

Main takeaway points

- Additional shielding not only in the target region but also the beamline is essential for lowering dose rates inside and next to the EHN2 hall
- Contributions from losses in the beamline are non-negligible
- Environmental impact is dominated by skyshine, while exposure of members of the public due to air releases is negligible
- Effective dose to members of the public well below the dose objective of <10 µSv/year</p>

References

- [1] C. Ahdida, M. Casolino, H. Morimoto, COMPASS 2018 Radiation Protection Survey, CERN internal Survey Note (2019)
- [2] C. Ahdida, H. Morimoto, COMPASS 2018 Radiation Protection Survey 2, CERN internal Survey Note (2021)
- [3] Website: https://fluka.cern
- [4] C. Ahdida, D. Bozzato, D. Calzolari, F. Cerutti, N. Charitonidis, A. Cimmino, A. Coronetti, G. L. D'Alessandro, A. Donadon Servelle, L. S. Esposito, R. Froeschl, R. García Alía, A. Gerbershagen, S. Gilardoni, D. Horváth, G. Hugo, A. Infantino, V. Kouskoura, A. Lechner, B. Lefebvre, G. Lerner, M. Magistris, A. Manousos, G. Moryc, F. Ogallar Ruiz, F. Pozzi, D. Prelipcean, S. Roesler, R. Rossi, M. Sabaté Gilarte, F. Salvat Pujol, P. Schoofs, V. Stránský, C. Theis, A. Tsinganis, R. Versaci, V. Vlachoudis, A. Waets, M. Widorski, *New Capabilities of the FLUKA Multi-Purpose Code*, Frontiers in Physics 9, 788253 (2022)
- [5] G. Battistoni, T. Boehlen, F. Cerutti, P.W. Chin, L.S. Esposito, A. Fassò, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P. Garcia Ortega, J. Ranft, S. Roesler, P.R. Sala, V. Vlachoudis, G. Smirnov, *Overview of the FLUKA code*, Annals of Nuclear Energy 82, 10-18 (2015)
- [6] V. Vlachoudis, FLAIR: A Powerful But User Friendly Graphical Interface For FLUKA, in Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009)
- [7] C. Iselin, HALO: a computer program to calculate muon halo, CERN report, 10.5170/CERN-1974-017(1974)
- [8] H. Vincke, C. Theis, ActiWiz optimizing your nuclide inventory at proton accelerators with a computer code, Progress in Nuclear Science and Technology (2014)
- [9] P. Vojtyla, Models for assessing the dosimetric impact of releases of radioactive substances from CERN facilities to the environment – Air, CERN Internal report (2021)

home.cern