

Collider constraints on massive gravitons coupling to photons

<u>Malak Ait Tamlihat(1)</u>, David d'Enterria(2), Laurent Schoeffel(3), Hua-Sheng Shao(4), Yahya Tayalati(1)

- (1) Mohammed V University in Rabat
- (2) CERN
- (3) Irfu, CEA, Universite Paris-Saclay
- (4) Sorbonne Universite et CNRS

Phys.Lett.B 846 (2023) 138237 (https://arxiv.org/abs/2306.15558)

LHC Forward Physics Meeting 2024

https://indico.cern.ch/event/1367510

INTRODUCTION

INTRODUCTION

Massive Gravitons in EFT

• In the EFT framework, the interaction of the gravitons with SM field is given by the following Fierz-Pauli Lagrangian density:

• For gravitons coupling to photons:

$$\mathscr{L}_{\gamma}^{\mathrm{G}} = g_{\mathrm{G}\gamma} \left(-F_{\mu\rho}F_{\nu}^{\rho} + \frac{1}{4}\eta_{\mu\nu}(F_{\rho\sigma})^{2} \right)$$

Graviton-Photon coupling

Massive Gravitons in EFT

• In the EFT framework, the interaction of the gravitons with SM field is given by the following the Fierz-Pauli Lagrangian density:

• For gravitons coupling to photons:

$$\mathscr{L}_{\gamma}^{\mathrm{G}} = g_{\mathrm{G}\gamma} \left(-F_{\mu\rho} F_{\nu}^{\rho} + \frac{1}{4} \eta_{\mu\nu} (F_{\rho\sigma})^2 \right)$$
Graviton-Photon coupling The Goa

$$G^{\mu
u}$$

I of this work is to derive constraints on this coupling

Graviton couplings

• Graviton without universal coupling, the simplified approach $Br(G \rightarrow \gamma \gamma) = 1$

• Graviton with universal coupling to all standard Model particles, it can decay with different modes, the Br(G-> XX) depends on the graviton mass m_G

• The graviton coupling to di-photons is dominant only <u>at low masess</u>

• <u>Above a few GeV</u>, $Br(G \rightarrow \gamma \gamma) \approx 0.05$

 10^{2} Graviton Decay Branching Ratio [%] 10^{1} 10^{0}

 10^{-1}

Motivation

- Photon-Photon collisions (Light-by-Light scattering: LbL) provide a clean environment to search for BSM particles (Axion-Like-Particle, spin0) and (gravitons, spin2)
- Recent searches for exclusive diphotons resonances produced in LbL at the LHC have allowed placing the most stringent constraints on ALPs over $m_a \approx 5 - 100$ GeV in PbPb UPCs ATLAS, CMS And $m_a \approx 0.5 - 2$ TeV in pp collisions <u>ATLAS</u>, <u>CMS</u>
- There are also constraints from e^+e^- colliders : <u>Bellell</u>, <u>BESIII</u>, <u>LEP</u>
- The Goal of this work is extracting new bounds on photon-graviton coupling by recasting the existing ALP constraints
- Considering two cases for massive gravitons:

Without universal coupling:

With universal coupling :

Br(
$$G \rightarrow \gamma \gamma$$
) = 1
Br($G \rightarrow \gamma \gamma$) < 1

Processes & Colliders

LHC Forward Meeting

Methodology

 We generated the production of both ALP and Graviton using gamma-UPC code, in different processes and considering different colliders systems, for the same coupling factors $g_{a\gamma}^{Gen} = g_{G\gamma}^{Gen} = 1TeV^{-1}$

 Process	Colliding system	Energy	Mass Rai
$\gamma\gamma \to a, G \to \gamma\gamma$	PbPb	$5.02 { m ~TeV}$	5–100 Ge
$\gamma\gamma ightarrow a, G ightarrow \gamma\gamma$	pp	$14 { m TeV}$	0.15–2 Te
$a, G\gamma ightarrow \gamma\gamma\gamma$	e^+e^-	$3-11~{\rm GeV}$	0.16–10 G

• We computed the total cross section of production in function of $m_{a,G}$

Case 1: Br($G \rightarrow \gamma \gamma$) = 1 $\sigma_G \approx 5\sigma_a$ Case 2: Br($G \rightarrow \gamma \gamma$) ≈ 0.05 $\sigma_G \approx \frac{1}{4}\sigma_a$

The factor $\frac{\sigma_a}{-}$ will play a role in the extraction of $g_{G\gamma}$ σ_G

Methodology

- Based on the simulated samples and by applying the following event selection criteria
- We calculated the difference of detector $\frac{A_G}{A_a}$ acceptance between ALP and graviton:
- In this case, Br($G \rightarrow \gamma \gamma$)=1, the formula (1) is used

$$g_{G\gamma} = g_{a\gamma} \times \sqrt{\frac{\sigma_a}{\sigma_G}} \times \frac{A_G}{A_a}$$
(1)

Selection criteria for ATLAS and CMS

Variable	PbPb $\gamma\gamma \rightarrow Pb\gamma\gamma Pb$		$pp \gamma \gamma \rightarrow p \gamma \gamma p$	
	ATLAS	CMS	ATLAS	CMS
$/s_{\rm NN}$ energy (TeV)	5.02	5.02	13.0	13.0
ntegrated luminosity \mathcal{L}	$2.2\mathrm{nb}^{-1}$	$0.4\mathrm{nb}^{-1}$	$14.6{\rm fb}^{-1}$	$9.4{\rm fb}^{-1}$
Exclusive number of photons	2	2	2	2
Single photon γ (GeV)	> 2.5	> 2	> 40	> 100
Single photon $ \eta^{\gamma} $	< 2.37	< 2.4	< 2.37	< 2.5
Pair $\gamma\gamma$ (GeV)	< 1	< 1	< 1	< 1
Pair $m_{\gamma\gamma}$ (GeV)	> 5	> 5	> 150	> 200
Pair acoplanarity $A^{\gamma\gamma}_{\phi}$	< 0.01	< 0.01	< 0.01	< 0.01
Rapidity gap range $ \eta^{ ext{gap}} $	< 5	< 5	_	_
Proton tagging	_	_	single	double
Proton energy loss ξ	_	_	[0.035 - 0.08]	[0.02 - 0.2]

Methodology

• In this case, Br($G \rightarrow \gamma \gamma$) < 1 , the formula (2) is used

$$g_{G\gamma} = g_{a\gamma} \times \sqrt{\frac{\sigma_a}{\sigma_G}} \times \frac{A_G}{A_a} \times \frac{Br(G - \gamma\gamma)}{A_a}$$

- We used this formula for both Pb-Pb, pp (ATLAS, CMS) and e^+e^- (LEP and BELLEII)
- For BES-III experiment, we use the following formula:

$$g_{G\gamma} = g_{a\gamma} \times \frac{m_{J/\Psi}^2 - m_G^2}{\sqrt{(4m_G^4 + 2m_G^2 m_{J/\Psi}^2 + \frac{2}{3}m_{J/\Psi}^4)B_{G \rightarrow \gamma\gamma}}}$$

 $m_{J/\Psi}$: The mass of J/Ψ meson m_G : The mass of the graviton

Results: $Br(G \rightarrow \gamma \gamma) = 1$

• In Pb-Pb , For m_G =5 GeV-100 GeV

 $g_{G\gamma} \approx 1 - 0.01 \ TeV^{-1}$

• In p-p, For m_G = 150GeV- 2TeV

 $g_{G\gamma} \approx 0.5 - 0.002 \ TeV^{-1}$

- The dashed curves are obtained by extrapolating the results to the integrated luminosity of HL-LHC
 - The constraints on $g_{G\gamma}$ can be enhanced by factor 4

[TeV⁻¹]

 $g_{G\gamma}$

Results: Br($G \rightarrow \gamma \gamma$) < 1

Exclusive .Vs Inclusive searches

- Comparing the main backgrounds of the two searches:
 - The exclusive LbL

 $pp \xrightarrow{\gamma\gamma} p\gamma\gamma p$

The inclusive pQCD

$$pp \rightarrow \gamma \gamma + X$$

 The cross sections for <u>inclusive vv</u> are up to 6 orders-of-magnitude larger than the <u>exclusive</u> <u>vv</u> one

Summary

• Exploring the possibility of detecting massive spin-2 (graviton) particles using EFT and via :

-Two photons processes: PbPb(pp)

- Three-photons final states: $e^+e^- \rightarrow$
- The universal-coupling scenario, maintaining consistency with perturbative unitarity principles enabling consideration of a free G- γ coupling in e^+e^- collisions
- The Exclusive studies showed, set G- γ coupling constraints that are more competitive than conventional inclusive LHC searches: UPC final states gain from reduced pileup backgrounds, negligible SM irreducible backgrounds
- The work presented is published in Physics Letters B journal: Phys.Lett.B 846 (2023) 138237 (<u>https://arxiv.org/abs/2306.15558</u>)

$$\rightarrow Pb(p)G(\gamma\gamma)Pb(p) \\ G(\gamma\gamma)\gamma$$

THANK YOU FOR YOUR ATTENTION

LHC Forward Meeting

BACKUP SLIDES

LHC Forward Meeting

Cross section for photon-photon collisions

• The kinetic term for the graviton field of mass m_G in photon-photon collisions :

$$\mathscr{L}_{\rm FP} = -\frac{1}{2} (\partial_{\rho} G_{\mu\nu})^2 + \partial_{\mu} G_{\nu\rho} \partial^{\nu} G^{\mu\rho} - \partial_{\mu} G^{\mu\nu} \partial_{\nu} G + \frac{1}{2} (\partial_{\rho} G)^2 - \frac{1}{2} (\partial_{\rho} G^{\mu\nu})^2 + \frac{1}{2} (\partial_{$$

• The propagator for the graviton field can be computed by

$$T^{\mu\nu\rho\sigma} = \frac{i}{p^2 - m_{\rm G}^2 + i\epsilon} \left(\frac{1}{2} (P_{\mu\rho}P_{\nu\sigma} + P_{\mu\sigma}P_{\nu\rho})\right)$$

 $P_{\mu\nu} = \eta_{\mu\nu} + p_{\mu}p_{\nu}/m_{\rm G}^2$

 $\frac{1}{2}m_{
m G}^2\left((G_{\mu
u})^2 - G^2
ight)$

 $(\mu,\rho) - \frac{1}{3} P_{\mu\nu} P_{\rho\sigma}$

Cross section for e^+e^- collisions

• The inclusive cross section for gravitons in e^+e^- collisions, Br($G \rightarrow \gamma\gamma$)=1

$$\sigma(e^+e^- \to \mathrm{G}\gamma \to \gamma\gamma\gamma) = \frac{\alpha}{36} \left(\frac{k_\gamma}{\Lambda}\right)^2 \frac{(s - m_\mathrm{G}^2)^3}{s^3} \frac{s^2 + 3sm_\mathrm{G}\gamma}{m_\mathrm{G}^3}$$

• This cross section has an asymptotic form:

$$\lim_{s \gg m_{\rm G}^2} \sigma(e^+e^- \to {\rm G}\gamma \to \gamma\gamma\gamma) = \frac{\alpha}{36} \left(\frac{k_{\gamma}}{\Lambda}\right)^2 \frac{1}{n}$$

 $m_{
m G}^2/s~
ightarrow~0$ • It is divergent in limit :

 $rac{m_{
m G}^2+6m_{
m G}^4}{m_{
m G}^4} \; {\cal B}_{{
m G}
ightarrow\gamma\gamma}$

Cross section for e^+e^- collisions

- The inclusive cross section for gravitons with universal coupling in e^+e^- collisions: $\sigma(e^+e^- \to G\gamma \to \gamma\gamma\gamma) = \frac{\alpha}{24} \left(\frac{k_U}{\Lambda}\right)^2 \frac{(s-m_G^2)^3}{s^3} \mathcal{B}_{G\to\gamma\gamma}$
- Considering gravitons coupling only to photons and electron
- The asymptotic cross section for $\ s \gg m_{
 m G\,:}^2 \ \ \sigma pprox rac{lpha}{6} (rac{k_U}{\Lambda})$

• For
$$m_G < < 2m_e$$
, $Br(G - > \gamma\gamma) = 1$
• For $m_G > > 2m_e$, $Br(G - > \gamma\gamma) = \frac{2}{3}$

The assumption $Br(G - > \gamma \gamma) = 1$ would be incorrect for e^+e^- colliders

s:
$$K_U = K_e = K_\gamma$$

$$)^{2}\mathcal{B}_{\mathrm{G}\to\gamma\gamma}$$

Decay widths

• Photon-Photon collisions:

$$\Gamma(\mathbf{G} \to \gamma \gamma) = (\frac{k_{\gamma}}{\Lambda})^2 \frac{m_{\mathbf{G}}^3}{80\pi}$$

• e^+e^- collisions (Bellell , LEP I&II):

$$\Gamma(\mathbf{G} \to e^+ e^-) = \left(\frac{k_e}{\Lambda}\right)^2 \frac{m_{\mathbf{G}}^3}{160\pi} \left(1 - \frac{4m_e^2}{m_{\mathbf{G}}^2}\right)^{3/2} \left(1 + \frac{8m_e^2}{3m_{\mathbf{G}}^2}\right)$$

• $e^+ e^-$ collisions (BES-III):

$$\Gamma(J/\psi \to a\gamma \to \gamma\gamma\gamma) = \frac{\alpha}{81} g_{a\gamma}^2 \left(1 - \frac{m_a^2}{m_{J/\psi}^2}\right)^3 \langle O^{J/\psi} \rangle \mathcal{B}_{a \to \gamma\gamma}$$

$$\Gamma(J/\psi \to G\gamma \to \gamma\gamma\gamma) = \frac{2\alpha}{243} \left(\frac{k_U}{\Lambda}\right)^2 \left(1 - \frac{m_G^2}{m_{J/\psi}^2}\right) \left(1 + 3\frac{m_G^2}{m_{J/\psi}^2} + 6\frac{m_G^4}{m_{J/\psi}^4}\right) \langle O^{J/\psi} \rangle \mathcal{B}_{G \to Q}$$

$\rightarrow \gamma \gamma (16)$

Statistical method

- The gravitons, could manifest as resonances in shape of the standard invariant mass spectrum of the two outgoing photons in LbyL
- An alternative statistical method could be used to extract the graviton-photon coupling :

Analyzing the distributions of the signal and backgrounds by varying m_G , and taking into account the experimental diphoton counts observed in each mass bin

