Recent results and Prospects of the LHCf experiment

LHC Forward Physics Meeting on 15 March 2024

Hiroaki MENJO /SEE, Nagoya University, Japan on behalf of LHCf and RHICf collaborations

Institute for Space–Earth Environmental Research

- Two towers, 20x20, 40x40mm² (Arm1), 25x25, 32x32mm²(Arm2)
- Tungsten layers, 16 GSO scintillators, 4 position sensitive layers (Arm1: GSO bar hodoscopes, Arm2: Silicon strip detectors)
- Thickness: 44 r.l. and 1.7 λ

15 March 2024

CR primary energy: 10⁹-10²⁰ eV

High energy interaction

> secondaries' interactions

- Reconstruct primary information from observed showers
 - Energy
 - Direction

- Composition (particle type) **Require precise understanding** 600 800 1200 high energy interactions slant depth [g/cm2] Auger, ICRC 2015

Low energy interactions However, current understanding is not enough - Diff. model prediction > experimental uncertainty - Muon deficit problem : 30-50% more muon in data

Surface detector (SD)

Fluorescence detector (FD)

Air fluorescence light

Sources of deficit ?

- vector mesons
- strange hadrons (K)
- pion interactions
- nuclear effects

Contents

- Results from Run 2 data (pp, $\sqrt{s}=13$ TeV in 2015)
 - inelasticity measurement using forward neutron
 - η meson production cross-section
- - Physics targets
 - Joint operation with ATLAS
- Preparation for Oxygen run in 2025

• Status of analyses with Run 3 data (pp, $\sqrt{s}=13.6$ TeV in 2024)

LHC Forward Physics Meeting

4

Forward Neutron at pp, $\sqrt{s=13}$ TeV

- Inelasiticity measurement

 (k = 1- E_{leading}/E_{CR}),
 → important parameters for
 understanding CR-air
 shower development.
- Update of the past result with extension of fiducial regions
- Energy resolution : 40%

15 March 2024

O. Adriani et al., JHEP07 (2020) 016

LHC Forward Physics Meeting

Inelasticity from the neutron result

15 March 2024

<<u>Inelasticity></u>

LHC Forward Physics Meeting

n meson measurement

- Motivation
 - 2nd dominant source of photons (EM) in air showers.
 - Indirect probe of strange quark production.
 - Large discrepancy of predictions between models
- Data and analysis
 - pp, √s=13 TeV
 - Arm2 detector
 - Similar as Type 1 π^0 analysis

Tower

O. Adriani et al., JHEP10 (2023) 169

n production diff. cross-section at pp, $\sqrt{s=13}$ TeV

oya, Japan, Jul 26-Aug 3, 2023

15 March 2024

15 March 2024

LHC Forward Physics Meeting

Data : constant in the whole energy range

EPOS-LHC, SIBYLL2.3

- Much larger than data
- These models cares low-mass resonance productions.
 → contribution from these decays

QGSJETII-04, DPMJET III

- Good agreement with data
- Less care about resonances. \rightarrow flat ratio

Operation with pp, $\sqrt{s=13.6}$ TeV

- Successfully completed in Sept 2022
 - Record of the longest fill in LHC: 50 hours
 - Low luminosity special run $L = 0.4 \ \mu b^{-1}/s$, $\beta^* = 19.2 \ m$
 - 300 M events obtained in total (\leftrightarrow 40 M in 2015) thanks to improvement of DAQ speed, higher luminosity, and optimization of trigger.
- Physics targets
 - □ Increase statistics of η and high-energy π^0 $\eta: 2 \text{ k events } (2015) \rightarrow 22 \text{ k events } (2022) \times 10^{\circ}$ \rightarrow cross-section measurement in X_F-p_T bins
 - \square Measurement of strange hadrons (K⁰s, Λ)

500

520

540

560

These analyses are on-going

LHC Forward Physics Meeting

600

580

Joint operation with ATLAS

- Improvement from the last run in 2015
- Large statistics 300 M events (\leftrightarrow 6 M in 2015)
- Participation of ATLAS ZDC and RPs $ZDC \rightarrow$ Improvement of energy resolution for neutrons $RPs \rightarrow Tagging scattered protons$
- Physics Targets
- Detailed study of single diffractive collisions
- Measurement of proton excitation (Δ +)
- Measurement of Λ ($\Lambda \rightarrow$ n + π^{0})
- p- π interaction study using OPE processes

LHCf+ATLAS merged dataset is getting ready. Start the physics analysis soon.

LHC Forward Physics Meeting

11

Joint operation with ATLAS RPs

Physics targets:

- Detailed study of single diffractive collisions,

Single diffractive

pO collisions in 2025

- Ideal for studying the cosmic-ray interactions of CR-Air
 - Long story for requesting this p-light ion collisions at LHC.
 - Run3 is a last opportunity of LHCf operations
 - Due to change of the TAN structure in Run4, LHCf detectors cannot fit the slot anymore. (the experimental slot width :10 cm -> 5 cm)
- Oxygen run in 2025
 - Currently the special run is scheduled for 1 week just after TS1 in 2025. LHCf Arm2 will be installed in the proton-remnant side of pO. The detector will be removed before OO (replaced with ATLAS ZDC-EM)
- Preparation status
 - Setup work of the DAQ system was completed in Jan-Feb.
 - Improving the DAQ speed to maximize the statistics.
 - A commissioning with ATLAS is planed during the next YETS.

Summary

- LHCf measures the very forward neutral particles, which are motivated for cosmic ray physics.
- Presented results from Run 2 data
 - Updated neutron results \rightarrow inelasticity measurement.
 - η meson diff. cross-section
- Many analyses are on-going

 - \Box η , π^0 with high statistics data, K⁰_s measurement Joint analyses with ATLAS including ZDC, RPs (Joint analysis using Run 2 data is on-going, also)
- pO operation will be in 2025
 - Ideal condition for studying CR-Air interactions.

Thank you very much !!

Backup

Estimators of Mass Composition

Energy dependency of muon excess

EPOS-LHC

$$z = \frac{\ln(N_{\mu}^{\text{det}}) - \ln(N_{\mu}_{p}^{\text{det}})}{\ln(N_{\mu}_{\text{Fe}}^{\text{det}}) - \ln(N_{\mu}_{p}^{\text{det}})}$$

• Line model with slope fitted to $\Delta z = z - z_{mass}$

- Correction to $\chi^2/n_{dof} = 1$ applied to take unexplained spread into account ٠
- Slope is 8σ (10 σ) away from zero for EPOS-LHC (QGSJet-II.04)

 $\frac{\langle \ln A \rangle}{1}$ $z_{\rm mass} \approx$

Onset of deviation around 40 PeV corresponds to $\sqrt{s} \sim 8$ TeV; in reach of LHC

Normalized muon numbers results observed by several CR experiments

Muon excess

=Composition model + Air Shower MC Interaction study at the highest energy \rightarrow LHC (\sqrt{s} =14TeV, Elab = 10¹⁷eV) AGASA Energy dependency Expected from X_{max} GSF 10¹⁹ \rightarrow RHIC ($\sqrt{s}=0.5$ TeV, Elab = 10¹⁴eV) v.s. LHC

Dembinski@ICRC2021

On-going Joint analyses with ATLAS

Superposition of single API: MPI / Forward neutron energy \searrow MPI \nearrow Forward neutron energy \rightarrow Kinematic overlap

15 March 2024

LHC Forward Physics Meeting

6 Trigger modes

LHCf Operation in 2022

Run3 LHCf+ATLAS joint operation

- Many physics cases
 - Detailed study of diffractive interaction using RPs
 - MPI modeling study using very forward neutron
 - \Box One-pion-exchange measurement for p- π^+ collision study

DAQ scheme

n using RPs rd neutron r p-π+ collision study

Improvement from 2015 run

- Presence of ZDC, RPs
- 3 ZDC-HAD modules were installed for LHCf runs
- AFP worked in the full period partially with ALFA
- No pre-scaling of LHCf triggers in ATLAS

→ All 300M events recorded (⇔ 6 M events in 2015)

