

Observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions with CMS and constraints on τ electromagnetic moments

Cécile Caillol, CERN

LHC Forward Physics meeting, 15/03/2024

τ electromagnetic moments from $\gamma\gamma \rightarrow \tau\tau$ events

- τ g-2 (a_{τ}) and electric dipole moment (EDM, d_{τ}) can be probed from $\gamma\tau\tau$ vertex $\gamma \rightarrow \tau\tau$ process includes 2 $\gamma\tau\tau$ vertices $\gamma \rightarrow \tau^+$ τ^+ τ
- Constraints on τ electromagnetic moments from form factor formalism or SMEFT approach
- In the SM, d_{τ} is extremely small (no appreciable CP violation) but it could be increased in BSM models

Can we see $\gamma\gamma \rightarrow \tau\tau$ in ultraperipheral pp collisions?

- Much larger integrated luminosity (O(10⁸))
- But:
 - No gain from Z⁴ enhancement
 - Low signal acceptance (soft signal)
 - Large backgrounds
 - High pileup

• If we can see $\gamma \gamma \rightarrow \tau \tau$ in pp runs, tight constraints on τ g-2 could be set because a_{τ} modifications from BSM physics are enhanced at large τ p_T and ditau mass

Signature

• 2 diffracted protons: not

reconstructed

• 2 back-to-back OS τ leptons:

acoplanarity < 0.015

• No hadronic activity close to the

di- τ vertex: N_{tracks} = 0

Counting tracks

- Define **z position of di-tau vertex** as average z position of selected tau leptons
- Define N_{tracks} as the number of tracks
 - with $p_T > 0.5$ GeV and $|\eta| < 2.5$
 - within a window of **0.1 cm** around the di-tau vertex
 - Excluding tracks from tau leptons

 About 30% of the windows at the center of the beamspot do not contain any pileup track

Final states and categories

• 4 di-tau final states: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$

- In each di-tau final state, 2 signal regions: N_{tracks} = 0 or 1
 - $N_{\text{tracks}} = 0$: ~50% of the signal, inclusive backgrounds reduced by $O(10^3)$
 - N_{tracks} = 1: ~25% of the signal, larger background

• Dimuon control region to derive corrections to the simulations

Strategy

- In each of the 8 categories (eµ, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$) x (N_{tracks} =0, N_{tracks} =1), fit visible invariant mass of tau pair (m_{vis})
 - SM $\gamma\gamma \rightarrow \tau\tau$ measurement: S/B ratio increases with m_{vis} because Drell-Yan background concentrated at lower masses
 - BSM a_{τ} and d_{τ} measurements: deviations from SM predictions increase with the mass

Track multiplicity correction from µµ region

- Compare N_{tracks} distribution in $Z \rightarrow \mu \mu$ data and $Z \rightarrow \mu \mu$ MC, inside windows sampled over the z axis
- Away from the μμ vertex: correct pileup track multiplicity
- Close to the µµ vertex: correct hard scattering track multiplicity

Applied to all photon-induced processes

9

Including (semi-)dissociative contributions

- Elastic-elastic (ee) signal process modeled with gammaUPC
- Single-dissociative (sd) and double-dissociative (dd) processes have larger cross section and may end up with an exclusive signature → rescale elastic signal to include these contributions
- Scaling factor = $(ee + sd + dd)_{obs} / ee_{sim}$ can be measured with $\gamma\gamma \rightarrow \mu\mu$ in the $\mu\mu$ CR and applied to $\gamma\gamma \rightarrow ee/\mu\mu/\tau\tau/WW$ in the signal region

Applied to all photon-induced processes

Including (semi-)dissociative contributions

• Inclusive backgrounds:

- Shape from data with 2 < N_{tracks} < 8
 - \rightarrow Negligible exclusive contributions
- Normalized to Z peak in events with

 $N_{tracks} = 0 \text{ or } 1$

- Elastic $\gamma\gamma \rightarrow \mu\mu/WW$:
 - Estimated from gammaUPC
 - Rescaled with linear $m_{\mu\mu}$ function to match data

Elastic simulation should be scaled by ~2.7 to describe all photoninduced contributions

Compatible with SuperChic predictions

Jet $\rightarrow \tau_h$ mis-ID background

- Measure "mis-ID factor", MF, for jets as
 - $MF = N(jets passing nominal \tau_h ID)$

N(jets failing nominal τ_h ID but passing very loose τ_h ID)

- If there is less track activity around the τ_h candidate:
 - The τ_h candidate is more isolated
 - It is more likely to pass the ID criteria
 - MF is higher
- Model N_{tracks} dependence with a multiplicative correction to the mis-ID rates
 - Parameterized with exponential at low N_{tracks}

Leading systematics

N_{tracks} = 0

 m_{vis} distributions in the different final states after the maximum likelihood fit, assuming SM a_τ and d_τ

• Signal visible in high m_{vis} bins

Observation of $\gamma\gamma \rightarrow \tau\tau$

- 5.3 σ observed, 6.5 σ expected
- First observation of $\gamma\gamma \rightarrow \tau\tau$ in pp runs

How BSM physics in a_{τ} affects $\gamma\gamma \rightarrow \tau\tau$

- At large m_{ττ}, γγ→ττ cross section increases with both positive and negative variations to a_τ
- The effect grows with $m_{\tau\tau}$
- We can constrain a_{τ} by looking at the yield and $m_{\tau\tau}$ distribution of the $\gamma\gamma \rightarrow \tau\tau$ process
- Expect better BSM sensitivity than with Pb-Pb runs because of higher $m_{\tau\tau}$ range probed

Extracting a_{τ}

- Using m_{vis} distributions in the SR, perform negative log likelihood scan over δa_{τ} , which modifies the signal shape and normalization
- In the $m_{\tau\tau}$ range considered in this analysis, both δa_{τ}
 - > 0 and < 0 increase the signal prediction
- Observed $\gamma\gamma \rightarrow \tau\tau$ deficit: tighter constraints than

expected, compatibility with SM

1σ uncertainty of 0.003 M a_τ Only 3 times the Schwinger term!

Comparing to previous results

Large improvement over LEP and LHC Pb-Pb

Approaching Belle precision

17

Conclusion

- Thanks to the excellent tracking performance of the CMS detector, we can isolate photon-induced events in ultraperipheral proton-proton collisions without tagging protons
- The CMS Collaboration has observed, for the first time, $\gamma\gamma \rightarrow \tau\tau$ events in pp runs
- These events were used to constrain the tau electromagnetic moments with an EFT approach

 a_{τ} = 0.0009 +0.0032/-0.0031 at 68% CL

 $-0.0042 < a_{\tau} < 0.0062$ at 95% CL

Improving previous constraints on tau g-2 by a factor of ~5 (PDG: -0.052 < a_τ < 0.013 at 95% CL) and approaching the precision of the Schwinger term (0.00116)