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T electromagnetic moments from yy > 11 events

* 1g-2 (a;) and electric dipole moment * The yy = 11 process includes 2 ytt vertices

(EDM, d.) can be probed from ytt vertex

_+_

* Constraints on t electromagnetic moments from form factor formalism or SMEFT approach

* In the SM, d. is extremely small (no appreciable CP violation) but it could be increased in BSM models
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Can we see Yy =2 17 in ultraperipheral pp collisions?

* Much larger integrated luminosity (O(102))
* But:

* No gain from Z* enhancement

* Low signal acceptance (soft signal)

* Large backgrounds

* High pileup

* If we can see yy =2 1T in pp runs, tight constraints on t g-2 could be set because a, modifications

from BSM physics are enhanced at large T p; and ditau mass



Signature

2 diffracted protons: not

reconstructed

2 back-to-back OS 7 leptons:

acoplanarity < 0.015

@ * No hadronic activity close to the

di-t vertex: Ny s = 0




Counting tracks

* Define z position of di-tau vertex as average z position of selected tau leptons

* Define N as the number of tracks

tracks
* with p;>0.5GeVand |n| <2.5
* within a window of 0.1 cm around the di-tau vertex

* Excluding tracks from tau leptons

* About 30% of the windows at

the center of the beamspot do

not contain any pileup track



Final states and categories

Th
64.8%

* 4 di-tau final states: ¢, et},, Uty T,74

u
17.4%

17.8%

e m Th
17.8% 17.4% 64.8%

* In each di-tau final state, 2 signal regions: Ny, =0or1
* Niacks = 0: “50% of the signal, inclusive backgrounds reduced by O(103)

* Nypaaks = 1: “25% of the signal, larger background

* Dimuon control region to derive corrections to the simulations



Strategy

* In each of the 8 categories (ey, ety, UTh, ThTh) X (Niracks =0, Niracks =1), fit visible invariant mass of tau pair (m,;)

* SM yy=>1t measurement: S/B ratio increases with m,;; because Drell-Yan background concentrated at

lower masses

* BSM a, and d, measurements: deviations from SM predictions increase with the mass

Drell-Yan Z/y*-> 11/

Jet2>e/u/t, mis-ID

Resonant Non-resonant
From simulation From data
Corrections from Z 2uu CR: 1. Acoplanarity 2. Niracks from

pileup

YY2>7TT
Signal, non resonant

From elastic simulation

3. N¢racks from hard
interaction

4. Dissociative

contributions .




Track multiplicity correction from pu region
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» Compare N, distribution in Z>up data and  Away from the pp vertex: correct pileup track
Z->up MC, inside windows sampled over the z multiplicity
axis * Close to the pp vertex: correct hard scattering

track multiplicity
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Applied to all photon-induced processes

Including (semi-)dissociative contributions

 Elastic-elastic (ee) signal process modeled with gammaUPC

* Single-dissociative (sd) and double-dissociative (dd) processes have larger cross section
and may end up with an exclusive signature = rescale elastic signal to include these

contributions

* Scaling factor = (ee +sd + dd) . / ee;, can be measured with yy=>up in the pu CR and
applied to yy=>ee/up/tt/WW in the signal region 9



Applied to all photon-induced processes

Including (semi-)dissociative contributions

* Inclusive backgrounds:

* Shape from data with 2 < Ny < 8

- Negligible exclusive contributions

* Normalized to Z peak in events with

Niracks =0 0r 1

* Elastic yy=2 p/WW:

* Estimated from gammaUPC

* Rescaled with linear my, function

to match data

Events / GeV

YY = pp, WW

Flat SF = 2.703 + 0.035

CMS Preliminary 138 fb™' (13 TeV
T I L T 1 | Ll I T T T Ll I T Ll l T T T T [ Al L T T ] L T T T l L T T Ll
A<0.015, Nyo = 0 + Observed
D|HC|. bkg. (3 = N(rack = 7)

Oyy — pu (elastic)
Oyy — WW (elastic)

Stat.

m
Lin. SF = 2.359 + 0.0034 x ==&

unc.

Elastic simulation should

GeV

be scaled by ~2.7 to

1 SR
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Jet-> 1, mis-ID background
CM.S. Preliminary 138 fo' (13 TeV)

* Measure "mis-ID factor”, MF, for jets as '

—— Exponential fit Fit uncertainty —

MF

N(jets passing nominal 7, ID)

N(jets failing nominal 7, ID but passing very loose t, ID)

High-m_CR, et, h* + n%(s)

* If there is less track activity around the 1, candidate:

MF correction factor

* The 1, candidate is more isolated
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* It is more likely to pass the ID criteria

* MF is higher
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* Model Ny, dependence with a multiplicative correction to the The jet is 4 times more likely to pass

mis-ID rates the nominal t, ID criteria if there is no

* Parameterized with exponential at low N, other track at the vertex .



CMS Preliminary

Leading systematics

138 b1 (13 TeV)

~Fit [ ]+1 o impact

Elastic rescaling (shape)

HS
Niooks €T (DY, VV)
j = Tt MF, Ntracks corr. (stat.) [ut,]
Bkg. stat. (tytn, Ntracks= 0, bin 3)
Bkg. stat. (ut,, Ntracks= 0, bin 4)
j = tn MF, CR selection (etp, ut,)
j = th MF, CR selection (tity)
j = th MF, Ntracks corr. (syst.) [ty
j = T MF, QCD/W ratio (etp, ut,)
Th ID (syst.)
T, ID at low Ntracks
j = th MF, Ntracks corr. (syst.) [ut,]
Trigger (ew)
u—t, mis-IDatlow N,
Bkg. stat. (ut,, Ntracks= 0, bin 3)
Bkg. stat. (et, Ntracks= 0, bin 4)
e—1, mis-ID at low N
j =t MF, N

tracks

Pileup reweighting (2018)

tracks
corr. (stat.) [tyth]

Factorization scale (DY)

:

~ +0.20
w=0.75",7g

Considering the constant rescaling for the elastic
simulations instead of the m ,-dependent one

Obs. - Bkg.

6 —Flatfit — Linear fit

vy = uu, WW

UE/HS track multiplicity correction to Drell-
Yan (6.5% uncertainty for N, = 0)

N...xs €xtrapolation of the jet—>t, MF to
estimate jet mis-ID background (up to "20%)

Real and fake 1, identification (at low N;,,.)
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e, Ntracks =0 138 fb_1 (1 3 TeV) eth’ Ntracks =0 138 fb_ (13 TeV)
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Observation of yy=2>171

CMS Preliminary 138 fb! (13 TeV)
£ 2500 O canved I 2 o v 12y - eelun -
o - [JExcl. bkg. B VV +tt [ Jet mis-ID
W 2000 —[ yy—> 1t [ _]Uncertainty

[ Bkg. unc.

* 5.3 o observed, 6.5 o expected

* First observation of yy=>tt in pp runs
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How BSM physics in a_ affects yy=2> 17

_ Madgraph5 v3.52 yy—tt 13 TeV

. > [ T T T —]

At large m_,, yy=> 1T cross section s [ — 5a,=+0.006; (0=0.92pb)

increases with both positive and negative &  E_ — SMyy—>tt (0=0.90pb) 3

£ [ =— ]

variations to a, R o2l T — — 6a,=-0.006; (0c=0.90pb) |

© = — =

The effect grows with m__ - T— .

o = —_ =

We can constrain a. by looking at the 107 £~ — =

yield and m__ distribution of the yy=> 17 - 9amma-UPC (CHFF) S

10" 2207.03012 e

process o : s
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Expect better BSM sensitivity than with @188t e

Pb-Pb runs because of higher m_, range 8 ;ZZ_ e e S e E
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Extracting a_

CMS Preliminary 138 fb' (13 TeV)

8 — * Using m, distributions in the SR, perform negative
. Ca L ot32 4 jnao
Obs.:a, = 973 x 107 (68% CL) | log likelihood scan over 8a., which modifies the
B . _ +41 —4 o T . . .
wExpia = 1273 x 107 (68% CL) - signal shape and normalization

* In the m_. range considered in this analysis, both oa,

g > (0 and < O increase the signal prediction

* Observed yy=2>17 deficit: tighter constraints than

expected, compatibility with SM

w 1o uncertainty of 0.003
a. =0a,+SM a,
Only 3 times the Schwinger term!

Dirac Schwinger SM
a. = a.=0.00116 a,=0.00118 16




OPAL

PLB 431 (1998) 188

L3

PLB 434 (1998) 169

DELPHI

EPJC 35 (2004) 159

ATLAS Pb+Pb

PRL 131 (2023) 151802

Comparing to previous results

CMS Preliminary 138 o™ (13 TeV)
® Observed —68% CL —95% CL

SM

CMS Pb+Pb
PRL 131 (2023) 151803
This result *‘«
1 1 1 1 | 1 1 1 / |§ 1 1 1 1 | 1
-0.1 -0.05 0 0.05
dr

Large improvement over LEP and LHC Pb-Pb

OPAL

PLB 431 (1998) 188

L3

PLB 434 (1998) 169

ARGUS

PLB 485 (2000) 37

Belle

JHEP 04 (2022) 110

This result

CMS Preliminary 138 o™ (13 Tev)

® Observed —68% CL —95% CL
III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
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*  d,=(-0.62 +/- 0.63) x 10" ecm

w« d.=(0.0+/- 1.7)|x 10" ecm
III|IIII|IIII|IIII|IIIIillII|IIII|IIII|IIII|IIII><1O_15
-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5

d: (e cm)
Approaching Belle precision 1



Conclusion

Thanks to the excellent tracking performance of the CMS detector, we can isolate photon-induced

events in ultraperipheral proton-proton collisions without tagging protons
The CMS Collaboration has observed, for the first time, yy=2> 1t events in pp runs

These events were used to constrain the tau electromagnetic moments with an EFT approach

a. =0.0009 +0.0032/-0.0031 at 68% CL
-0.0042 < a,<0.0062 at 95% CL

Improving previous constraints on tau g-2 by a factor of °5 (PDG: -0.052 < a,.< 0.013 at 95% CL) and
approaching the precision of the Schwinger term (0.00116)

More info in CMS-PAS-SMIP-23-005 18



http://cds.cern.ch/record/2891376?ln=en

