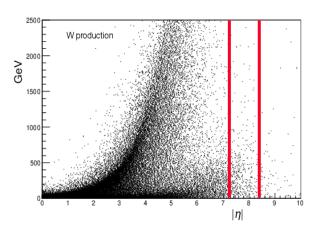

Results and plans of SND@LHC

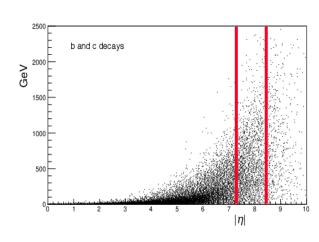
Eric van Herwijnen (Imperial College London)

On behalf of the SND@LHC Collaboration 15 March 2024

Scattering and Neutrino Detector @ LHC

Scattering and Neutrino Detector at the LHC

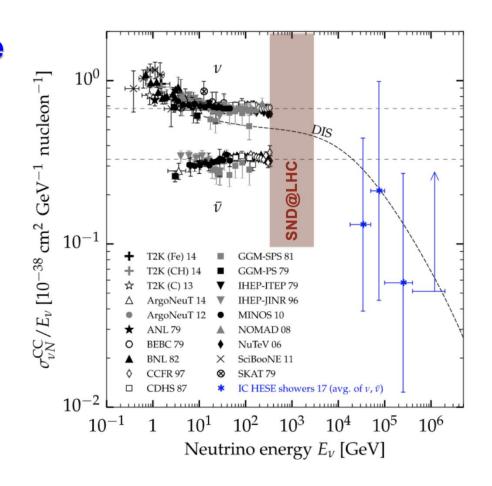

480m downstream of IP1


- off-axis
- 7.2 < η < 8.4

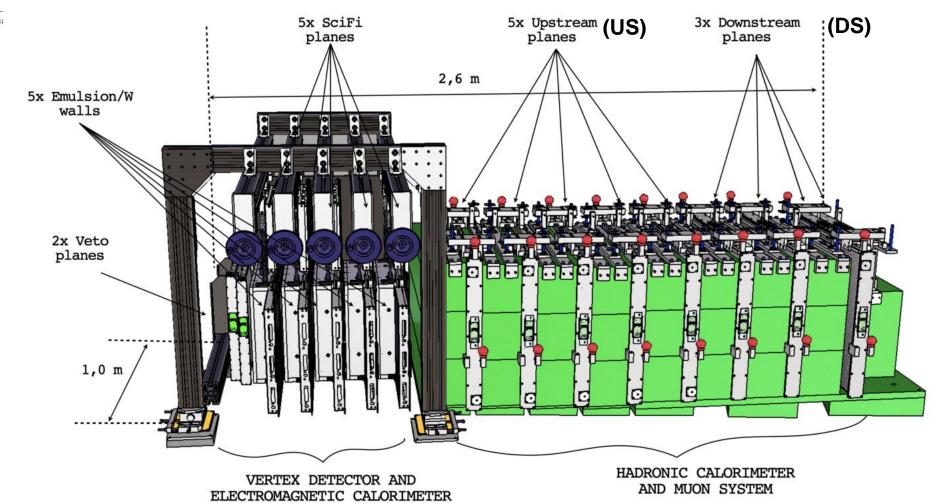
Motivation

- Large expected ν flux in forward direction
- High ν energies: relatively large ν cross sections
 - **7.2** < η < 8.4: large nb high energy ν from heavy flavour

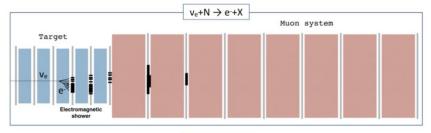
Runs: 25010 *					
Flavour	Neutrinos in acceptance ⟨E⟩ [GeV] Yield		$\langle E \rangle$ [GeV] Yield		
ν_{μ}	130	3.0×10^{12}	452	910	
$\overline{ u}_{\mu}$	133	2.6×10^{12}	485	360	
$\dot{\nu_e}$	339	3.4×10^{11}	760	250	
$ar{ u}_e$ $ar{ u}_e$	363	3.8×10^{11}	680	140	
ν_{τ}	415	2.4×10^{10}	740	20	
$ar{ u}_{ au}$	380	2.7×10^{10}	740	10	
TOT		4.0×10^{12}		1690	

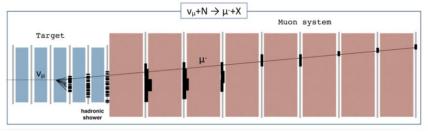

Dung: 250fb-1

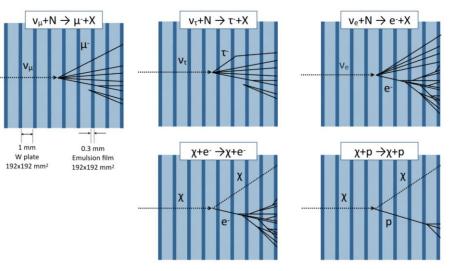
N. Beni et al., "Physics Potential of an Experiment using LHC Neutrinos", J. Phys. G: Nucl. Part. Phys. 46 (2019) 115008, doi:10.1088/1361-6471/ab3f7c [arXiv:1903.06564]


Physics program

- $\sigma_{pp \rightarrow \nu X}$ in 7.4 < η < 8.7 range
- ν_e as a probe of charm quark production
- Lepton universality test: v_T/v_e and v_μ/v_e
- Measurement of the NC/CC ratio
- Direct search for feebly interacting particles through their scattering


Detector

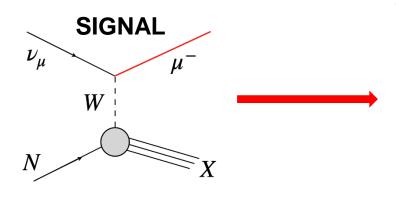



Event reconstruction

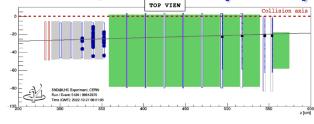
- First phase: electronic detectors
 - ν candidates
 - µ's
 - em showers (SciFi)
 - ν energy (SciFi+Muon)

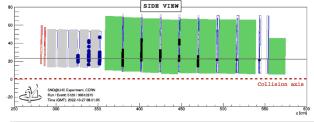
- Second phase: nuclear emulsion
 - em showers
 - ν vertex reconstruction
 - match with candidates from electronic detectors

Reconstructible signal topologies in emulsion


 $\nu_{\rm e}$ (top) and $\nu_{\rm u}$ (bottom) CC interactions 15 March 2024 LHC Forward

LHC Forward Physics working group




v_{μ} observation

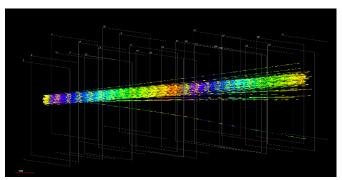
 Observation of collider muon neutrinos with the SND@LHC experiment PRL 131, 031802(2023)

- Expected 157 ± 37
 events in 36.8 fb⁻¹ (2022),
 4.2 after cuts
- Found: 8 with 6.8σ significance

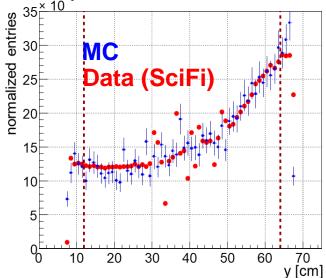
	Data	Signal simulation
All	8.4×10^{9}	157
Fiducial volume	4.9×10^{5}	11.9
One muon-like track	17	6.1
Large SciFi activity	13	5.1
Large hadronic activity	12	4.7
Low muon system activity	8	4.2

Muon flux measurement

Measurement of the muon flux at the SND@LHC experiment EPJC 84, 90, (2024)

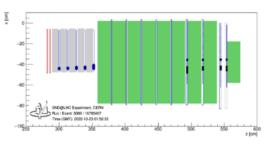

SciFi: 2.06± 0.01(stat.) ± 0.12(sys.) ×10⁴ cm⁻²/fb⁻¹

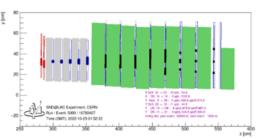
■ DS: 2.02 ± 0.01 (stat.) ± 0.08 (sys.) $\times 10^4$ cm⁻²/fb⁻¹

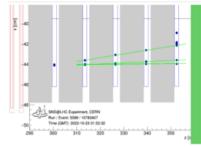

- Data/MC simulation agreement 25%
- Results in emulsion:

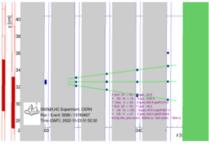
Data: 1.5± 0.01×10⁴ cm⁻²/fb⁻¹

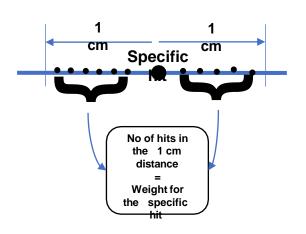
MC: 1.4×10⁴ cm⁻²/fb⁻¹

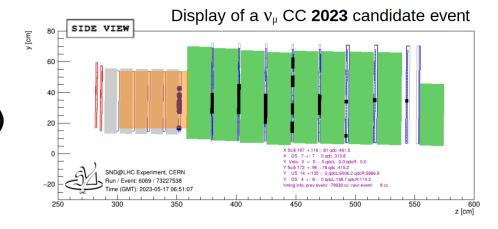

Track display in 25 films, starting from 1 mm² around the emulsion film center. The colors represent base-tracks in the different emulsion films of the target.

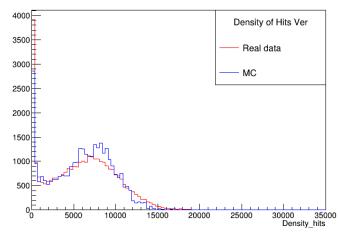



Muon tridents


- $\mu^{\pm} + N \rightarrow \mu^{+}\mu^{-}\mu^{\pm} + N$ (genuine trident)
- $\mu^{\pm} + N \rightarrow \mu^{\pm} + N + \gamma, \gamma + N \rightarrow N + \mu^{+} + \mu^{-}$ (muon bremsstrahlung followed by gamma conversion)
 - Can distinguish between the two
- Process recently in Geant4
 - Validation
 - Also in heavy ion collisions

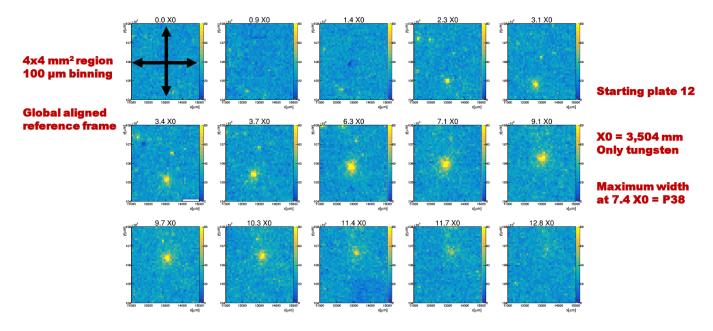





2023 update

- Muon neutrinos. Relaxed fiducial volume cuts:
 - 15 events (2022), 17 events (2023)
 - Factor 2 analysis improvements
- Electron neutrinos
 - Use SciFi hit density as discriminating variable

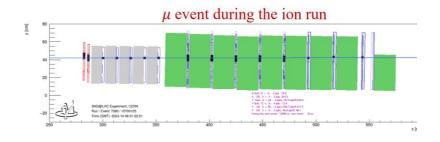
SciFi hit density distribution in Test beam Dens_hits_max_dens



Emulsion

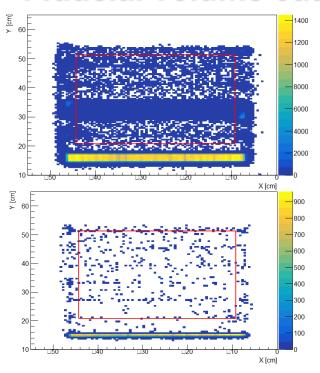
Hints for neutrino interactions seen

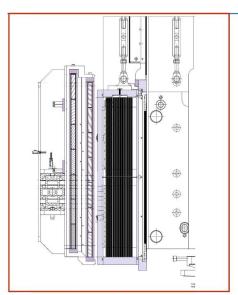
Cluster development



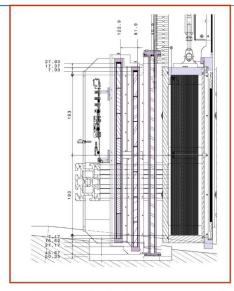
Muon flux in 2023 ion run

Preliminary results

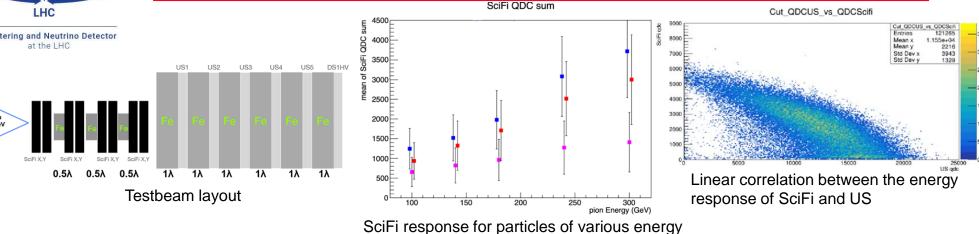

- SciFi: Φ_{μ} = $(4.8 \pm 0.1) \times 10^4 \text{ nb/cm}^2$
- DS: $\Phi_{\mu} = (4.4 \pm 0.1) \times 10^4 \text{ nb/cm}^2$
- MC Φ_{μ} = 2.9 × 10⁴ nb/cm²
- $\bullet \quad \Phi_{\mu}^{\text{ion}}/\Phi_{\mu}^{\text{pp}} = 2 \times 10^6$
- Cross section ratio: $\sigma_{\text{inel}}^{\text{ion}}/\sigma_{\text{inel}}^{\text{pp}} = 0.6 \times 10^4$
- Collision rate @IP1: 1.6 GHz (pp), 2.9 MHz (ions)
- μ rate @detector: 0.4 Hz/cm² for pp, 0.05 Hz/cm² for ions
- μ s per collision in ion run ~65 times larger than in pp

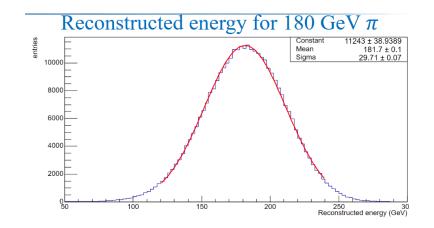


Veto upgrade (2023-2024 YETS)

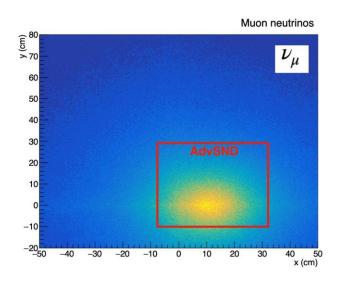

• Fiducial volume cut removes 92% of ν CC interactions

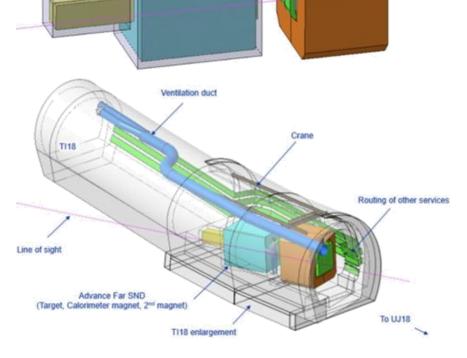
Extrapolated position of the reconstructed Scifi track at Veto plane 0 (top) and Veto plane 1 (bottom)


Previous layout: two planes with H bars


Upgraded layout: third plane with vertical bars

Energy calibration


$$E = k \times QDC_{SciFi} + \alpha \times QDC_{US}$$



AdvSND (for HL-LHC)

- Silicon vertex detector required
 - Re-use CMS tracker
- 2.5 x 10⁵ ν and ν CC DIS ints of all flavours (for 3 ab⁻¹)

Muon filter Magnetized Had Cal

Vertex det

EM Cal

Magnetic Spectrometer

LOI being prepared

SHIP

Approved in ECN3

SND

AdvSND will be a prototype for SHiP's SND detector

Conclusions

- Efficient data taking in 2022 (95%) and 2023 (99.7%)
- Relaxed fiducial volume cut: v_{μ} ints doubled
- Muon flux measured, also in heavy ion data
- ν_e interactions
 - hints in electronic detectors and emulsion
- Veto upgrade will enhance rejection power
- Muon trident-like events seen
 - Validate MC
- Energy calibration
 - **E**stimate hadronic energy in v_{μ} candidates