FASER 2023 Overview

LHC Forward Physics Meeting, 15/03/2024

Presented by Alex Keyken, on behalf of the FASER Collaboration

ForwArd Search ExpeRiment

Magnets

- Search for new physics and neutrinos in the very forward physics region.
- The detector location allows near background-free searches.
- ~ 7 m long detector with a $< 0.21 \text{ mrad} (\eta > 9.2) \text{ acceptance}$ for particles originating at IP1.

- 3 Magnets: 0.57 T permanent dipoles bending in y-plane.
- 4 Trackers (from ATLAS):
 - Spatial resolutions of 20 μ m (y) and 800 μ m (x).
 - Angular resolutions of 250 μrad (y) and 13 mrad (x).

Front Scintillator veto system

- Tracking spectrometer stations TO ATLAS I Scintillator veto system Decay volume Electromagnetic Calorimeter FASERv emulsion Interface detector Tracker (IFT) Trigger / timing scintillator station Magnets Trigger / pre-shower scintillator system
- Calorimeter (from LHCb): 25 radiation lengths of alternating lead and plastic.
- 4 Scintillators: veto (~30 cm diameter), timing and pre-shower.

Example of 1.3 TeV muon from collision event with 6.8 TeV stable beams

TO ATLAS IP

Run 8336

Event 1477982 2022-08-23 01:46:15

Data Taking

- 98% data taking efficiency since startup.
- Physics trigger rates are on average 1 kHz.
- 35 fb⁻¹ collected in 2022 and 33 fb⁻¹ in 2023.
- FASERv emulsion box has been replaced 4 times.

Dark Photons at FASER

- Cosmologically favoured dark photons in FASER's angular acceptance are:
 - rarely produced in π^0 decays ($m_{A'} < 135$ MeV), η decays ($m_{A'} < 548$ MeV) and dark bremsstrahlung ($m_{A'}$ up to O(2 GeV)),
 - long-lived, traveling $\mathcal{O}(100)$ m before decaying.
- For $2m_e < m_{A'} < 2m_{\mu}$, the dark photons then decay almost exclusively to a highly collimated e^+e^- pair.
- B-L gauge bosons are produced similarly but may decay to SM neutrinos. Benchmark Dark Photon: $\mathcal{L} \supset \frac{1}{2} m_{A'}^2 A'^2 - \epsilon e \sum_f q_f A'^{\mu} \bar{f} \gamma_{\mu} f$ B-L Gauge Boson: $\mathcal{L} \supset \frac{1}{2} m_{A'_{B-L}}^2 A'^2_{B-L} - g_{B-L} \sum_f Q_{B-L}^f A'^{\mu}_{B-L} \bar{f} \gamma_{\mu} f$ Vetov scintillator station (2 layers)
 Veto scintillator station (3 layers)
 Magnets
 Magnets
 (2 layers)

Dark Photon Backgrounds

- > Neutrinos Interacting In Decay Volume:
 - $(1.5 \pm 0.5 \text{ (stat.)} \pm 1.9 \text{ (syst.)}) \times 10^{-3}$ events estimated by MC.
- Neutral Hadrons:
 - Parent muon misses veto and hadrons traverse all 8 interaction lengths of FASER ν .
 - Estimated to be $(8.4 \pm 11.9) \times 10^{-4}$ events.
- ➢Veto Inefficiency:
 - The combined inefficiency of all 5 planes is $\leq 10^{-20}$
- ➤Geometric Muons:
 - Large incidence-angle muons that miss the veto.
 - Negligible as scintillator tracks must be within fiducial volume (validated by data-driven method).
- ➢Non-collision Background:
 - Bunch timing info distinguishes Beam-1 background, while no cosmic events satisfy a
 >100 GeV calo deposit or ≥1 good track.

Dark Photon Results

Selection Cuts:

- Event time consistent with colliding bunch.
- No veto scintillator signal.
- Two fiducial tracks
 (p >20 GeV).
- E >500 GeV deposited in calo.

For 27 fb⁻¹, no events are found in the signal region...

90% confidence exclusion regions for dark photons (left) and B-L gauge bosons (right). Red line represents the relic target density region that is cosmologically favored.

Collider Neutrinos at FASER

- Forward hadron decays lead to collimated beams of high energy neutrinos along LOS which had never been observed directly.
- Using the tungsten in FASERv as target, Charged-Current-interacting muon neutrino candidates leave tracks along all scintillators int the detector.
- Good tracks must leave no signal in the FASER ν scintillator, have timing consistent with colliding bunches and p_{μ} >100 GeV.

Collider Neutrino Backgrounds

Neutral Hadrons:

- Neutral hadrons that interact past the veto.
- Expected 0.11 \pm 0.06 neutral hadrons from $O(10^9)$ muons simulated using FLUKA and GEANT4.

Geometric Muons:

- Large incidence-angle muons that miss the veto.
- Expected 0.01 ± 0.23 geometric muons from control region extrapolation.
- Veto Inefficiency:
 - Estimated to be smaller than $\mathcal{O}(10^{-7})$ events.
- > Non-collision Background:
 - Cosmic events and Beam-1 background.
 - Expected negligible from non-collision data taking.

Collider Neutrino Results

- 153_{-13}^{+12} events observed with a significance of 16 σ (35.4 fb⁻¹ analysed).
- Comparable to the simulation expected 151 ± 41 events*.
- Signal contains 40 anti-neutrinos.

*Uncertainty due to the generator discrepancy for forward hadron production.

GENIE does not include experimental systematic uncertainties such as that on momentum resolution.

 $\mathcal{L} = 35.4 \text{ fb}^{-1}$

Signal region

 10^{2}

FASER

120

100

80

60

20

 10^{1}

[mm]

 $r_{
m veto\,}$

Extrapolated

$FASER\nu$

- 1.1 ton, 1m long target mass: 730 layers of interleaved tungsten and emulsion films.
- Emulsion film contains silver bromide crystals (AgBr) which, after chemical development, record ionization quasi-permanently.
- Spatial resolution of 50 nm.
- Films saturate at ~ 5x10⁵ tracks/cm² and must be replaced periodically.
- First neutrino analysis uses 150 films or 68 Kg (9.5 fb⁻¹ in 2022).

What to Look Forward To... For Run 4

(assuming 250 fb⁻¹ in Run 3 and 680 fb⁻¹ in Run 4)

FASER2 at the Forward Physics Facility

awaiting approval

Scenario	Distance	Available	Decay Volume	Available	Decay Volume
	to IP [m]	Length [m]	Length [m]	Diameter [m]	Diameter [m]
Original (F2)	480	15	5	2	$2 \; (/ \; 1 \; / \; 0.5)$
Alcoves $(S1)$	500	5	1.5 (/ 2)	1.5 (/ 2)	$2 \ / \ 1 \ (/ \ 0.5)$
New Cavern $(S2)$	620	25	10 (/ 15 / 20)	2	$2 \ / \ 1 \ (/ \ 0.5)$

Summary

- Smooth data taking since detector start-up with 98% efficiency.
- Dark photon search produces 90% confidence exclusion regions for the Benchmark Dark Photon and B-L Gauge Boson models.
- FASER and FASER ν observe ~150 collider neutrinos, including:
 - the first direct observation of collider v_e ,
 - the highest energy neutrinos detected from an artificial source.
- Various analysis on-going, including ALPs and ν flux measurements.
- Calorimeter and preshower upgrades will improve data taking in Runs 3 and 4.

Thank you for your attention :)

Dark Photons: energy-dependent generator model uncertainty estimation (left) and non-collision background control samples after various selections

Dark Photons: events remaining after applying different selection criteria (bottom) and all selection criteria applied(right).

	Data		
Cut	Events	Efficiency	
Good collision event	151231009	—	
No Veto Signal	1250092	0.827%	
Timing + Preshower Signal	332549	0.220%	
$\geq 1 \text{ good track}$	22224	0.015%	
= 2 good tracks	0	0.000%	
Track radius $< 95 \text{ mm}$	0	0.000%	
Calo $E > 500 \text{ GeV}$	0	0.000%	

Description	Value				
Pre-selecton					
Time consistent with a colliding bunch identifier					
Timing scintillator trigger					
Scintillator					
Timing station:					
Top or Bottom Scintillator charge	$> 70 \ \mathrm{pC}$				
OR Top and Bottom charge	> 30 pC				
Each Pre-shower scintillator charge	>2.5 pC				
Each Veto scintillator charge	< 40 pC				
Tracking					
Exactly 2 Good Tracks					
Momentum	$> 20 { m GeV}$				
χ^2/NDF	< 25				
Number of tracker layers on track	≥ 7				
Number of tracker hits on track	≥ 12				
Fiducial selection					
Track extrapolated to all scintillators					
and tracking stations	< 95 mm				
Calorimeter					
Calorimeter energy (sum of four channels)	> 500 GeV				

Dark Photons: exclusion plot with a cosmic relic target band, corresponding to different values of the model-dependent parameters m_{χ} and α_D .

Dark Photons: FASER comparison with exclusion regions set by other experiments.

Collider Neutrinos: geometric muon background estimation using control region data.

FASERv: 2 fb⁻¹ MC energy spectra of neutral hadrons and neutrinos entering the detector.

FASER*v*: v_e (top) and v_{μ} (bottom) MC and data comparison of track multiplicity, collision axis angle, momentum and azimuthal angle.

