ATLAS Forward Proton Summary of Data-taking + Plans for 2024/2025

Pragati Patel

on behalf of ATLAS Forward Detectors

Institute of Nuclear Physics Polish Academy of Sciences Krakow, Poland

LHC Forward Physics Workshop July 14, 2024

ATLAS Forward Proton (AFP) Detector

- + 4 Roman Pot stations at \pm 205 and 217 m from ATLAS collision point.
- Near stations: Silicon Tracker (SiT) for precise proton position measurement.
- Far stations: SiT + Time-of-Flight (ToF) detectors for pile-up background reduction.

AFP Silicon Tracker

Roman pot as "seen" by proton beam, thin window of RP is visible:

4 layers of SiT modules mounted on heat exchanger:

Installation of detector package:

- 4 Silicon Tracker (SiT) planes are present in each RP station to measure proton position.
- Slim-edge 3D ATLAS IBL pixel sensors bonded with FE-I4 readout chips.
- 336×80 array of $50 \times 250 \ \mu m^2$ pixels per plane.
- 14° tilt to improve resolution in x, staggering of layers to improve resolution in y.
- Resolution (measured): $5.5 \pm 0.5 \ \mu m$ in x and $\approx 30 \ \mu m$ in y [JINST 11 (2016) P09005].

Run 2 Performance Highlights: Silicon Tracker

- Hit reconstruction efficiency between 95 and 98% (single plane; top plot).
- Track reconstruction efficiency on the level of 99%.
- No major issues with multiple-track reconstruction (showers; bottom left).
- Change of detector-beam distance nicely reflected by change of the average track multiplicity (bottom right).

AFP Time-of-Flight Detectors

- Purpose: Assign protons to individual collisions in IP1 (reducing background due to pile-up).
- Concept:
 - measure ToF difference: $\Delta t = (t_A t_C)/2$,
 - calculate vertex position: $z_{ToF} = c\Delta t$,
 - compare vertex z position reconstructed by ATLAS and AFP ToF.
- Detectors: 4×4 matrix of quartz bars, L-shaped and rotated 48° w.r.t. LHC beam (Cherenkov angle).
- Timing: aim for 20 ps [Opt. Express] resolution for Run 3, 30 ps at the beginning (in Run 2) [JINST 11 (2016) P09005].

Run 2 Performance Highlights: Time-of-Flight

- Low data-taking efficiency, later understood to be due to non-radiation hard PMT (top plot).
- Very good timing reconstruction resolution:
 - 20 40 ps within a station (between ToF bars; bottom left),
 - translating to ~ 5 mm of vertex reconstruction resolution (bottom right).

Run 2 Performance Highlights

- Around 32 fb⁻¹ of high-μ data recorded (top right plot), from which 19.2 fb⁻¹ used for analyses after data quality requirements.
- Few special, low pile-up runs ($\mu \sim$ 0.04, 1 and 2).
- Detector alignment well understood:
 - between SiT planes (bottom left),
 - SiT plane rotation (bottom middle),
 - wrt. proton beam (bottom right).
- Run 2 performance studies published:
 - SiT: ATL-FWD-PUB-2024-001,
 - ToF: JINST 19 (2024) P05054.

AFP Upgrades for Run 3

- Improvement in silicon detector cooling (new heat exchangers).
- Production of new SiT modules.
- New design of detector flange: Out-of-Vacuum solution for ToF detectors.
- New trigger module: possibility to trigger on single train.
- New photo-multipliers: address inefficiency issues from Run2 data-taking.
- Upgraded readout chain.
- Above items were successfully tested at DESY in 2020.
- Both NEAR and FAR station have been successfully installed in the LHC tunnel before 2022 data-taking campaign.

Run 3 Data-taking

• Continuous data-taking with other ATLAS sub-systems in high pile-up runs:

• Several dedicated, low- μ data-taking campaigns:

2022		2023		2024	
pile-up	recorded lumi	pile-up	recorded lumi	pile-up	recorded lumi
1 0.25 0.05 0.02 0.005		1 0.2 0.05 0.005	$\begin{array}{c} 230 \text{ nb}^{-1} \\ 35 \text{ nb}^{-1} \\ 63 \text{ nb}^{-1} \\ 1.76 \text{ nb}^{-1} \end{array}$	1	12.5 pb ⁻¹

Run 3 Performance Highlights

- Well understood inter-plane alignment; studies of global alignment ongoing.
- High SiT hit reconstruction efficiency.
- Good ToF efficiency during low- μ runs (top right); inefficiency at high- μ under investigation.
- Correlations between AFP and 'central" ATLAS objects (bottom middle).
- Link to additional performance plots.

10 / 13

Concern: Inversion of Triplet Polarity

- In 2023 a concern about LHC magnets in vicinity of IP1 and IP5 was raised by some of LHC experts: elements may not survive until the end of Run 3.
- In order to mitigate the effect, an idea to re-cable the inner triplets and change the plane of the crossing angle (horizontal ↔ vertical) was proposed.
- The AFP acceptance is highly dependent on the LHC optics settings:
 - unfortunately the "full inversion" (reversing magnet polarity and changing IP1 crossing planes) resulted in no protons in the AFP \rightarrow end of data-taking!
 - for 2024 "partial inversion" (reversin triplet polarity followed by optics adaptation) was introduced:
 - acceptance comparable to 2022–2023 one,
 - worse energy reconstruction resolution (proton trajectories closer to each other),
 - increased radiation in vicinity of TCL6 collimator \rightarrow negative, destructive effect on the AFP electronics in the tunnel.
 - for 2025+ the decision abut optics is not made yet \rightarrow major uncertainty regarding the AFP data-taking plans.

Plans for Data-taking

2024:

- Continue data-taking as efficiently as possible:
 - use short accesses to promptly replace electronics damaged due to radiation,
 - refurbish damaged parts & produce spares,
 - mitigate the SiT radiation damage (especially in the peak of the "diffractive pattern") by increasing high voltage as long as possible,
 - understand and address ToF inefficiency at high- μ .
- Take part in the 2024 "pp reference" run (Beam Based Alignment required).
- Participate in all special, low- μ runs once they will happen.

2025 (and 2026?):

- High- μ plans contingent on inner triplet radiation dose mitigation strategies:
 - if triplet polarity as in 2024 ightarrow AFP in all standard high- μ runs,
 - if crossing angle changes from vertical to horizontal at IP1 \rightarrow AFP limited to special runs only.
- Participation in 2025 proton-oxygen and oxygen-oxygen runs:
 - insertion possible on both proton and oxygen sides,
 - additional beam-based alignment required.

HL-LHC:

- Run 4 (HL-LHC, from 2029): no ATLAS Roman Pots,
- Run 5+: possibility of re-installation (space reservation maintained); recently, some discussions on the physics programme and detector technology started.

Summary

- Run 2 performance:
 - SiT: high efficiency (95-98%), alignment understood,
 - ToF: good timing resolution (20-40 ps), but faced efficiency issues,
 - general: good understanding of global alignment and proton reconstruction,
 - \sim 32 fb⁻¹ of high- μ data recorded; analyses ongoing.
- Run 3 upgrades and data-taking:
 - improved cooling, new modules (SiT, ToF, readout electronics), out-of-vacuum ToF solution,
 - continuous data-taking in high pile-up runs: $\sim 84.6 fb^{-1}$ of high- μ data recorded so far (2.6 times more than in Run 2),
 - several dedicated low- μ campaigns,
 - detector performance studies ongoing,
 - first analyses of Run 3 data started.
- Challenges and future plans:
 - concerns about radiation damage of LHC magnets leading to optics changes,
 - 2024: continue data-taking, address radiation damage of AFP electronics,
 - 2025+ plans are driven by the decisions on the LHC (change of crossing plane),
 - HL-LHC: no AFP in Run 4, possibility for re-installation in Run 5+.

The work of PP was partially supported by the Polish National Science Centre grant: 2019/34/E/ST2/00393.