Constraining tau g–2 at the (HL-)LHC

Savannah Clawson (DESY)

LHC FWD WG Meeting 15th July 2024

Introduction

This talk is based on **arXiv:2403.06336** [Lydia Beresford, SC, Jesse Liu]

Strategy to measure tau $q-2$ via photon fusion in LHC proton collisions

Lydia Beresford,
1,* Savannah Clawson,
1,* and Jesse Liu $^{2,\, \ddag}$ 1 Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany ² Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK

Measuring the tau-lepton (τ) anomalous magnetic moment $a_{\tau} = (g_{\tau} - 2)/2$ in photon fusion
production ($\gamma \gamma \to \tau \tau$) tests foundational Standard Model principles. However, $\gamma \gamma \to \tau \tau$ eludes observation in LHC proton collisions (pp) despite enhanced new physics sensitivity from highermass reach than existing probes. We propose a novel strategy to measure $pp \rightarrow p(\gamma \gamma \rightarrow \tau \tau)p$ by introducing the overlooked electron-muon signature with vertex isolation for signal extraction. Applying the effective field theory of dipole moments, we estimate 95% CL sensitivity of $-0.0092 < a_{\tau} < 0.011$ assuming 300 fb⁻¹ luminosity and 5% systematics. This fourfold improvement beyond existing constraints opens a crucial path to unveiling new physics imprinted in tau-lepton dipoles.

I. INTRODUCTION

Precise measurements of electromagnetic (EM) dipoles are fundamental tests of the Standard Model (SM) that could reveal beyond-the-SM (BSM) physics. A cornerstone SM principle is lepton universality, where all three generations (electron e, muon μ , tau-lepton τ) couple equally to gauge bosons. The leading SM loop correction from quantum fluctuations is also flavor universal, shifting magnetic moments by the Schwinger term $\alpha_{\rm EM}/2\pi \simeq 0.0012$ [1, 2]. The electron and muon anomalous magnetic moments $a_{e,\mu} = (g_{e,\mu} - 2)/2$ are now tested
to 13 [3-12] and 10 decimal places [13-16], respectively. However, the tau-lepton counterpart a_{τ} is still compatible with zero to two decimal places [17] as its 0.3 ps proper lifetime [18-21] precludes storage-ring probes [15]. The existence of tau-lepton loop interactions with photons in nature thus remains strikingly untested.

The most precise single-experiment a_{τ} constraint is a -0.052 < a_z^{obs} < 0.013 95% CL limit by DELPHI [22] at the Large Electron Positron Collider (LEP), with similar precision by L3 and OPAL [23, 24]. ATLAS and CMS recently pioneered Large Hadron Collider (LHC) probes of a_{τ} using photon fusion production of tauleptons ($\gamma \gamma \rightarrow \tau \tau$) in lead-lead (PbPb) data [25, 26]; the ATLAS 95% CL limit is $-0.057 < a_{\tau}^{obs} < 0.024$. Such large experimental uncertainties relative to the SM prediction $a_{\tau,\text{SM}}^{\text{pred}} = 0.00117721(5)$ [27] could conceal BSM dynamics motivated by lepton sector tensions [28-44]. Specific models predict quadratic scaling $\delta a_{\ell} \propto m_{\ell}^2$ with lepton mass m_{ℓ} [45-47], implying $(m_{\tau}/m_{\mu})^2 \simeq 280$ times larger effects for a_r than a_μ . New physics can also violate charge-parity (CP) symmetry, inducing an electric dipole d_{τ} . Standard LHC proton-proton (pp) collisions reach higher $\mathcal{O}(\text{TeV})$ masses, enhancing BSM dipole sensitivity

over $\mathcal{O}(100 \text{ GeV})$ in PbPb [48-53]. Despite this key benefit, cross-section yielding over 30 million events to date, and major photon-fusion advances [54-88], $\gamma\gamma \rightarrow \tau\tau$ remarkably evades observation in pp data. This paper proposes the strategy to measure $\gamma\gamma \rightarrow \tau\tau$

and tau-lepton EM dipoles in LHC pp collisions (Fig. 1). We initiate the first Monte Carlo (MC) simulation analysis of the pp \rightarrow p($\gamma\gamma \rightarrow \tau\tau$)p signal that includes im-

FIG. 1. Tau-leptons produced from photon fusion in proton beams with electron-muon $\tau\tau \to e\nu\mu\mu\nu\nu$ decays as a Feynman diagram (left) and detector signature illustrating the vertex isolation technique for the electron-muon vs pileup tracks (right). New physics can modify the magnetic moment δa_r .

portant weak-boson backgrounds and detector effects neglected in earlier work [89]. Prevailing wisdom targets hadronic tau-lepton decays for high signal rates, but inefficient triggers, formidable backgrounds, and multiple pp interactions (pileup) obstruct detection. We overcome these longstanding obstacles by leveraging recent progress [90-92] to introduce the overlooked electronmuon signature, track-vertex isolation techniques (Fig. 1, right), and kinematic discriminants all unexplored for pp probes of $\gamma\gamma \rightarrow \tau\tau$. This unlocks crucial access to high-momentum kinematics unique to pp events that augment BSM dipole sensitivity. We also propose critical strategies for controlling systematics. Our proposal complements other production modes [93-98] and future facilities [99-112], while broadening the precision taulepton [113-119] and search programs [120-131].

II. MODEL AND SIMULATION

Relativistic field theory generalizes the Schrödinger-Pauli Hamiltonian $\mathcal{H} = -\mu_{\tau} \cdot \mathbf{B} - \mathbf{d}_{\tau} \cdot \mathbf{E}$ describing EM dipoles into an effective Lagrangian coupling the Dirac spinor tensor $\sigma^{\mu\nu} = i[\gamma^{\mu}, \gamma^{\nu}]/2$ to the photon field $F_{\mu\nu}$

 $\mathcal{L}_{\text{dipole}} = \frac{1}{2} \bar{\tau}_{\text{L}} \sigma^{\mu \nu} \left(a_{\tau} \frac{e}{2m_{\tau}} - \mathrm{i} d_{\tau} \gamma_5 \right) \tau_{\text{R}} F_{\mu \nu}, \qquad (1)$

As always, with many slides shamelessly stolen from Jesse

Lepton magnetic moments

● Lepton spin, **S**, and magnetic moment, **μ**, linked through gyromagnetic factor, **g**

Quantum corrections give rise to anomalous magnetic moments:

$$
a_l = (g-2)/2
$$

Leading SM loop correction is the Schwinger term:

$$
a_l = \alpha_{\rm EM} / 2\pi \cong 0.0012
$$

- Electron and muon g-2 among some of the most precisely measured quantities in physics
	- \rightarrow Interesting tension between experiment and theory in muon g-2
- Tau g-2 evades precise measurement due to short tau lifetime

- Precise measurements of EM dipoles are fundamental tests of the SM
- Can probe EM dipoles through $\gamma\gamma \rightarrow \tau\tau$ process

- Precise measurements of EM dipoles are fundamental tests of the SM
- Can probe EM dipoles through $\gamma\gamma \rightarrow \tau\tau$ process
- Existence of tau loop interactions with photons remains strikingly untested
	- ➞ Experimental precision is still far below the Schwinger term!

- **This process had previously only been measured in Ultra-peripheral Heavy Ion (HI) collisions (UPC) at the LHC**
	- ➞ Proposals by Beresford & Liu [arXiv:1908.05180], Dyndal, Klusek-Gawenda, Schott, Szczurek [[arXiv:2002.05503\]](https://arxiv.org/abs/2002.05503)
	- Expect SM process to be low-mass, observation of $\gamma\gamma \rightarrow \tau\tau$ already performed in HI collisions by both **ATLAS** [[PRL 131 \(2023\) 151802\]](https://arxiv.org/abs/2204.13478) and **CMS** [\[PRL 131 \(2023\) 151803](https://arxiv.org/abs/2206.05192)]
	- ➞ HI analyses only just approaching same sensitivity to tau g-2 as 20 year old limit set at **LEP** [[EPJC 35, 159–170 \(2004\)\]](https://arxiv.org/abs/hep-ex/0406010)
	- ➞ However, **better constraining power on anomalous tau g-2 in pp collisions** due to higher mass reach

DESY. [|] Savannah Clawson **[|]** [savannah.clawson@d](mailto:savannah.clawson@cern.ch)esy.de **|** Constraining tau g–2 at the LHC **7**

Effective field theory approach

Analysis strategy

Fully leptonic tau decays: opposite-sign (OS) eμ

Trigger p_T(e/μ) > 18/15 GeV | Δz_{min} > 1 mm efficiency: ε _{quark} = 0.4%, signal ε _{pileup} = 50%

ATLAS (SC Editor) [PHYS-PUB-2021-026,](https://cds.cern.ch/record/2776764) Beresford, SC & Liu [2403.06336](https://arxiv.org/abs/2403.06336)

Unconventional: intact protons ⇒ **isolated vertex**

Apply $\gamma \gamma \rightarrow WW \rightarrow e\nu \mu \nu$ breakthroughs to $\gamma \gamma \rightarrow e\nu \nu \mu \nu \nu$

ATLAS [PLB 816 \(2021\) 136190](https://www.sciencedirect.com/science/article/pii/S0370269321001301) & SC thesis [\(ATLAS Thesis Award 2023](https://home.cern/news/news/experiments/atlas-congratulates-its-2023-thesis-awards-winners))

The power of tracking thresholds

Analysis strategy relies on track veto

- \rightarrow Veto on additional activity surrounding ditau vertex
- \rightarrow Power of this veto depends on tracking capabilities!

track-pT > 100 MeV

track-pT > 1 GeV

track-pT > 5 GeV

The power of tracking thresholds

- **•** Increasing track- p_T thresholds mean
	- \rightarrow We are less impacted by pileup
	- \rightarrow But we lose ability to reject our backgrounds with underlying events
- We quantify these effects in our study via two efficiencies:

The **efficiency of the signal** passing the track veto requirement in the presence of **pileup** tracks

We want this efficiency to be as high as possible

The **efficiency of the QCD backgrounds** passing the track veto requirement due to tracks in the **underlying event**

We want this efficiency to be as low as possible

For more details, see [ATL-PHYS-PUB-2021-026](https://cds.cern.ch/record/2776764?) (SC Editor)

DESY. [|] Savannah Clawson **[|]** [savannah.clawson@d](mailto:savannah.clawson@cern.ch)esy.de **|** Constraining tau g–2 at the LHC **12**

Sensitivity: 4⨉ **to 8**⨉ **improvement via eµ alone**

Sensitivity: 4⨉ **to 8**⨉ **improvement via eµ alone**

DESY. [|] Savannah Clawson **[|]** [savannah.clawson@d](mailto:savannah.clawson@cern.ch)esy.de **|** Constraining tau g–2 at the LHC **13**

Sensitivity: 4⨉ **to 8**⨉ **improvement via eµ alone**

Sensitivity: 4⨉ **to 8**⨉ **improvement via eµ alone**

DESY. [|] Savannah Clawson **[|]** [savannah.clawson@d](mailto:savannah.clawson@cern.ch)esy.de **|** Constraining tau g–2 at the LHC **13**

Experimental results

- Recent Run 2 CMS analysis [\[arXiv:2406.03975\]](https://arxiv.org/abs/2406.03975), improving 20 year old LEP limits on tau g-2 by a **factor of five!!**
	- ➞ Observed (expected) significance of 5.3σ (6.5σ)
	- ➞ Combined fully leptonic (OS) tau decays with semi-leptonic + fully hadronic
		- **○** 94% of all final states considered, compared to 6% in our study
	- ➞ Combined elastic + dissociative production
		- **○** ~ 3x increase in yields

➞ Analysis uses many **methods from ATLAS γγ→WW observation** [[PLB 816 \(2021\) 136190](https://arxiv.org/abs/2010.04019)] related to charged particle multiplicity and signal modelling

Experimental results

Recent Run 2 CMS analysis [\[arXiv:2406.03975](https://arxiv.org/abs/2406.03975)], improving 20 year old LEP limits on tau g-2 by a **factor of five!!**

- Precision on tau g-2 still $3\times$ Schwinger term
- Constraint on anomalous tau g-2 limited by statistical uncertainty

$$
a_{\tau} = 0.0009^{+0.0016}_{-0.0015} \, \text{(syst)}^{+0.0028}_{-0.0027} \, \text{(stat)}
$$

Corresponding to $-0.0042 < a_r < 0.0062$

DESY. | Savannah Clawson **|** [savannah.clawson@d](mailto:savannah.clawson@cern.ch)esy.de **|** Constraining tau g–2 at the LHC $a_r = 0$ $a_r = 0.00116$ $a_r = 0.00118$ **15**

Pinning down tau g-2

C. Caillol, CERN - LPCC seminar, March 12th 2024

The precision journey has just started...

More precision needed to probe BSM effects scaling with m_e^2 ...

Possible extensions

 \rightarrow Typical mass acceptance of m_T \geq 350 GeV

DESY. [|] Savannah Clawson **[|]** [savannah.clawson@d](mailto:savannah.clawson@cern.ch)esy.de **|** Constraining tau g–2 at the LHC **17**

 \mathbf{p}^+

Summary

- Photon-fusion events in HI UPC and pp collisions can probe the anomalous magnetic moment of the tau
- Strategy to measure the $\gamma\gamma \rightarrow \tau\tau$ process in pp collisions proposed in [arXiv:2403.06336](https://arxiv.org/abs/2403.06336)
- Recent [Run 2 result from CMS](https://arxiv.org/abs/2406.03975) with $5\times$ improved precision on tau g-2!!
- Analyses are still trying to probe LO SM loop corrections
	- ➞ Far off precision needed to probe BSM effects
	- \rightarrow More data helps: a_{τ} constraint stats limited
	- ➞ But also room for new techniques and ideas
		- low-p_⊤ tracking, new triggers, forward proton tagging, ..?

Like what you see? Join the [Cross](https://indico.cern.ch/event/1429924/) [Collider Talk](https://indico.cern.ch/event/1429924/) on Thursday morning

Electron: 13 decimal places

Fan et al [PRL 2023](https://arxiv.org/abs/2209.13084), Morel et al [Nature 2022](https://www.nature.com/articles/s41586-020-2964-7), Parker et al [Science 2018](https://science.sciencemag.org/content/360/6385/191)

*a*_e (exp) = 0.001 159 652 180 59(13) *a* e (pred) = 0.001 159 652 181 61(23)

Muon: 10 decimal places

FNAL Muon *g*–2 [PRL 2023](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.161802), Muon *g*–2 theory [Phys Rept 2020](https://arxiv.org/abs/2006.04822), Lattice *g*–2 [Nature 2021](https://arxiv.org/abs/2002.12347)

a µ (exp) = 0.001 165 920 55(24) *a* µ (pred) = 0.001 165 918 10(43)

Tau: 2 decimal places

ATLAS (JL Editor) [PRL 2023,](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.151802) DELPHI [EPJC 2004](https://arxiv.org/abs/hep-ex/0406010), Eidelman & Passera [MPLA 2007](https://arxiv.org/abs/hep-ph/0701260)

 a_{τ} (exp) = $-0.018(17)$ \leftarrow PRESSING PROBLEM a_{τ} (pred) = 0.001 177 21(5)

Much room for physics beyond SM

Martin & Wells [PRD 64 \(2001\) 035003](https://arxiv.org/abs/hep-ph/0103067)

$$
\delta a_{\ell} \sim m_{\ell}^2 / M_{\rm SUSY}^2 \quad m_{\tau}^2 / m_{\mu}^2 \sim 280
$$

Tau decay modes

C. Caillol, CERN - LPCC seminar, March 12th 2024

Power of pp vs PbPb

- BSM effects are more pronounced at high tau p_T and ditau mass
- Can access much higher mass scales in pp collisions = better constraining power on anomalous g-2

