Exploring the Frontier of Low-x Physics: The ALICE FoCal upgrade
LHC Forward Physics Workshop

Nicolas Strangmann on behalf of the ALICE collaboration
nicolas.strangmann@cern.ch

Goethe Universität Frankfurt
Institut für Kernphysik

July 15, 2024
Describing (non)-linear QCD Matter

Striving for universal description: Theoretical models aim to capture full Q^2-x evolution

→ Measurements spanning logarithmically large x and Q^2 range needed
→ Multi-messenger approach using multiple probes at different experiments

ALICE-PUBLIC-2023-001
ALICE Upgrades

ALICE 2
- ITS2 upgrade
- New TPC readout
- New muon forward tracker
- Continuous readout

ITS3 + FoCal
- Curved wafer-scale silicon sensors
- Forward Calorimeter → Low-\(x\) reach

ALICE 3
- Retractable vertex detector
- Data taking in runs 5 & 6
- Entirely new experiment

--

Carlos Lacasta, XIII CPAN days talk

Nicolas Strangmann
The ALICE FoCal upgrade
July 15, 2024
The ALICE Forward Calorimeter (FoCal)
The ALICE Forward Calorimeter (FoCal)

- Upgrade to ALICE detector
- $3.2 < \eta < 5.8 \rightarrow x \sim 10^{-6}$
- Installation before Run 4 (2029)

New: Approved by LHCC

$\sim 1m^3$

alice-figure.web.cern.ch/node/11222
The ALICE Forward Calorimeter (FoCal)

- Upgrade to ALICE detector
- \(3.2 < \eta < 5.8 \rightarrow x \sim 10^{-6}\)
- Installation before Run 4 (2029)

Highly granular Si-W tracking-calorimeter combining two sensor technologies:
- 18 silicon pad layers (1 \(\times\) 1 cm\(^2\))
- Two pixel layers (30 \(\times\) 30 \(\mu\)m\(^2\))

Hadronic scintillating-fibre calorimeter
- Scintillating fibres embedded in Cu tubes (2.5 mm outer diameter)
- Captures full energy of hadronic showers that started in FoCal-E
- Enables jet measurements and photon isolation

Nicolas Strangmann

The ALICE FoCal upgrade

July 15, 2024
The FoCal Physics Program

Explore non-linear QCD in regime of saturated gluons at low Bjorken-\(x\) and constrain nPDFs

Based on ALICE-PUBLIC-2023-001
ALICE-PUBLIC-2023-004

⇒ Large \(x\) and \(Q\) coverage
The FoCal Physics Program

Explore non-linear QCD in regime of saturated gluons at low Bjorken-x and constrain nPDFs

Using a multi-messenger approach:

i) Production of π^0, η and vector mesons

ii) Prompt photon production

iii) Jet measurements

iv) γ-jet and γ-hadron correlations

v) Vector meson photoproduction in UPCs

... and more

⇒ Large x and Q coverage

Based on

ALICE-PUBLIC-2023-001
ALICE-PUBLIC-2023-004
Photon Reconstruction with the FoCal

- Simulation of FoCal-E and FoCal-H detector response to single photons using GEANT3
- Reconstruction efficiency $\approx 90\%$
- Energy resolution saturates at $\approx 3\%$ for high energies up to $E_\gamma = 1.5 \text{ TeV}$
i) Measurement of π^0, η and vector mesons

- Measurement of neutral mesons, e.g. π^0, η and ω up to $E_{\text{sim}} = 2$ TeV
- Pixel layers allow measuring photons with less than $d = 5$ mm separation
- Reconstruction efficiency of up to 75%

ALICE FoCal Simulation

Single π^0 event in layer 5
ii) Prompt Photon Production

- Prompt photons sensitive to gluon \((n)PDF\)
- No strong final state interactions
- Enable investigation of low-\(x\) gluons:
 - Shadowing?
 - Non-linear QCD effects (saturation)

Direct production

\[\Rightarrow \text{Direct access to parton, e.g. gluon} \]

\[\Rightarrow \text{Key observable in the FoCal physics program to explore the saturation regime} \]
ii) Prompt Photon Identification

Large background of decay photons
⇒ Mostly $\pi^0/\eta \rightarrow \gamma\gamma$

Prompt photon signal

Prog.Part.Nucl.Phys.53:329-338,2004

Signal fraction

FoCal simulation
$\gamma s = 14$ TeV, $4 < \eta < 5$
$p_{T,iso}^{E+H} < 2.0$ GeV/c in $R = 0.4$

γ_{dir} / all clusters

γ_{dir} / all clusters

0.05 0.1 0.15 0.2 0.25

normalized counts

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
ii) Prompt Photon Identification

Isolation
Restrict p_T within cone of $R = 0.4$.

Shower shape
Restrict shower ellipse elongation to reduce merged π^0 clusters.

π^0 **tagging**
Tag decay photons according to inv. mass of cluster pairs.

Signal fraction
Selections increase signal fraction $\times 11$.
ii) Prompt Photon Physics Impact

- FoCal pseudo data of prompt photon R_{pA}
 - Using NLO+nPDF input
 - Stat. and sys. uncertainties estimated for Run 4

- Expect similar constraints from FoCal for nPDF as LHCb D^0 meson measurement

Multiple messengers! $\gamma_{\text{prompt}} + D^0$

Precise D^0 measurement by LHCb
- Included in nNNPDF3.0

Prompt photons: no final state interaction/hadronization → Clean probe of low-x formalism universality
iii) γ-Hadron Correlations

Theory:
- γ-hadron correlations give insight into low-\(x\) gluon dynamics
- \(\Delta \phi\) correlation depends on saturation scale

⇒ Expecting **decorrelation** due to saturation

Experiment:
- \(\gamma_{iso}-\pi^0\) correlation in simulated pp collisions
- Precise correlation \(\Delta \phi\) peak measurement

Diagram:
- ALICE simulation, pp \(\sqrt{s} = 14\) TeV (\(\int L = 100\) pb\(^{-1}\))
- \(p_{T}\) (isolated cluster) = 10–15 GeV/c
- \(p_{T}\) (reconstructed \(\pi^0\)) = 1–2 GeV/c
- \(p_{T}\) (reconstructed \(\pi^0\)) = 2–4 GeV/c

Phys. Rev. D 105, 114052
iv) Jet Measurements

- Inclusive and dijet production sensitive to gluon saturation
- Energy scale (JES) similar to ALICE’s EMCal
- Very competitive Energy Resolution (JER) $\sim 12\%$
- Measured Neutral Energy Fraction (NEF) can be used to bias jet sample
 - Determine NEF from overlapping shower energy in FoCal-E and FoCal-H
 - Larger NEF \rightarrow larger JES (JER unchanged)

Jet Energy Scale (JES)

Jet Energy Resolution (JER)
v) Vector Meson Photoproduction in UPCs

Theory:

- Photoproduction cross section of J/ψ in UPCs proportional to gluon density squared at LO
- Deviation of cross section from power-law expected from saturation at large $W_{\gamma p}(\text{low } x)$

Experiment:

- Extend measurement to unprecedented low-x
- In p–Pb, Pb–p and Pb–Pb collisions
- Reconstruction of J/ψ and $\psi(2S)$ possible

Bylinkin, Nystrand, Tapia Takaki in J. Phys. G (2023) 50 055105
v) Vector Meson Photoproduction in UPCs

Theory:
- Photoproduction **cross section** of J/ψ in UPCs proportional to gluon density squared at LO
- Deviation of cross section from power-law expected from saturation at large $W_{\gamma p}$ (low x)

Experiment:
- Extend measurement to unprecedented low-x
- In p–Pb, Pb–p and Pb–Pb collisions
- Reconstruction of J/ψ and $\psi(2S)$ possible

Bylinkin, Nystrand, Tapia Takaki in J. Phys. G (2023) 50 055105
FoCal Prototype

FoCal-E Pixels (2 layers)
- ALICE PIxel DEtector (ALPIDE) sensors
- Pixel $\sim 30 \times 30 \mu m$

FoCal-E Pads (18 layers)
- Si p-type sensors by Hamamatsu
- HGCROC readout

FoCal-H (9 modules)
- Scintillating fibres in 668 Cu tubes per module
- SiPM readout

Test beam campaign:
- Full-length prototype tested at CERN PS and SPS
- Electron and hadron beams
- $1 \leq E \leq 350$ GeV
- Prototype performance: arXiv:2311.07413
FoCal Prototype: FoCal-E Pixels

- Excellent shower separation $\mathcal{O}(1\text{mm})$ through two highly granular pixel layers
 → Enables reconstruction of highly boosted $\pi^0 \rightarrow \gamma\gamma$
- Detector response well described by GEANT4 + diffusion model

$2e^-\text{-event}$

Shower width $\lesssim 1\text{ mm}$

arXiv:2311.07413
FoCal Prototype: FoCal-E Pad Layers

- Key metrics quantified with e^- beam at SPS
- Linear energy response
- Energy resolution less than 3% for $E > 100$ GeV

Longitudinal shower profile

e^-
FoCal Prototype: FoCal-H

- Performance tested in hadron beam at SPS
- Energy response slope agreement between data and MC
- Energy resolution saturates at \(\approx 12\% \)
- Slight disagreement with simulation (GEANT4) under investigation

Energy response

Energy resolution
• The "3-in-1" Forward Calorimeter (FoCal) will be installed as an upgrade to ALICE for Run 4
• Simulations demonstrate FoCal’s capabilities to probe low-\(x\) gluons using various probes
• Test beams show prototype meets physics requirements assumed in simulations

⇒ The FoCal will play a vital role in the global effort with EIC + LHC + RHIC to further our understanding of non-linear QCD evolution

Summary

- FoCal LOI: cds.cern.ch/record/2719928
- FoCal Physics: cds.cern.ch/record/2858858
- Phys. Performance: cds.cern.ch/record/2869141
- Testbeam: arxiv.org/abs/2311.07413v1
- FoCal TDR: cds.cern.ch/record/2890281

Nicolas Strangmann
The ALICE FoCal upgrade
July 15, 2024
19