Th-229原子核時計実現に向 けた真空紫外レーザー 開発への挑戦

岡山大学 異分野基礎科学研究所 M1 清水航太朗

OUTLINE

- 1. 研究動機
 - 1. ²²⁹Th
 - 2. 期待される応用例
 - 3. 微細構造定数の時間依存性の 検証
 - 4. これまでの報告
 - 5. アイソマー状態からの脱励起 真空紫外(VUV)光の検出方 法
 - 6. VUV光検出セットアップ
 7. アイソマー発光観測

- 8.²²⁹Thレーザー励起
- 2. VUVパルスレーザー開発
- 1. 要求されるレーザーパワー
- 2. VUV光生成の原理
- 3. VUVレーザー案
- 4. Ti:S共振器
- 5. 共振器評価
- 6. パルスエネルギー評価
- 3. まとめ

• $T_{1/2} \sim 7880$ [year] 全原子核の中で唯一レーザーによる直接励起が望める 低エネルギーの第一励起準位をもつ →アイソマー(準安定状態)、~8 [eV]、τ~10³ [s] Nuclear isomers 107 Atomic shell transitions Optical clock 106 region 10⁵ 「原子核を用いた Energy (eV) 量子エレクトロニクス」 104 の実現が期待されている 10³ 1, ¹H 235mU 2, ¹⁹⁹Hg 10² 3, 40Ca 4, 27AI+ 229mTh 5, 171Yb 10¹ 6. 87Sr

1015

1020

3 5 6

10⁰

105

Half-life (s)

1010

7. 171Yb+

10-5

10-10

3

L. Wense et al., Nature 533, 47-51 (2016).

1-2. 期待される応用例

✓ 『1秒』の定義は?

133Cs原子時計

「セシウム133原子の基底状態の2つの超 微細準位間の遷移に対応する放射の周期 の9,192,631,770倍の継続時間 精度~10⁻¹⁵ 原子核時計(精度~10⁻¹⁹)の方式 ・イオントラップ(高精度な周 波数標準の作成が可能) ・イオン結晶を用いた固体型の 時計標的(一度に大量のThを励 起可能)

1-3. 微細構造定数の時間依存性の 検証

高エネルギー物理学→精密測定の精度の高さがカギ

例:微細構造定数

$$\alpha = \frac{e^2}{2\varepsilon_0 hc} \approx 1/137$$

 初期の宇宙では値が異 なっていた可能性 →実は時間依存してい る?

・その他応用 「1秒」の定義の更新 相対論的測地学 ダークマター、ダークエネルギーの検証 など… $\frac{171}{Yb^{+}S-F} + \frac{87}{Sr^{1}S_{0}} - \frac{3P_{0}}{\Delta \alpha} / \frac{\Delta \alpha}{\alpha \Delta t} = (-6.5 \pm 4.7) \times 10^{-18} \text{ [year]}_{\text{E. Peik, et. al., The 25th Int. Conf. on Atom. Phys.}_{\text{Thu-013 (2016).}}$

実験精度をより高めることが可能

いずれも脱励起光の直接観測によるものではない →アイソマー励起・脱励起を直接観測したい

	lsomer energy (eV)		
(1)	3.5 ± 1		
(2)	5.5 ± 1		
(3)	7.6 ± 0.5		
(4)	7.8 ± 0.5		
(5)	8.28 ± 0.17		
(6)	8.30 ± 0.92 8.1 ± 0.7		
(7)	7.84 \pm 0.29 8.10 \pm 0.17 8.1 \pm 1.3 7.8 \pm 0.8		

- R. Helmer, C.W. Reich, An excited state of 229Th at 3.5 eV. Phys. Rev. C 49, 1845– 1858 (1994)
- 2. Z.O. Guimaraes-Filho, O. Helene, Energy of the 3/2+ state of 229Th reexamined. Phys. Rev. C 71, 044303 (2005)
- 3. B.R. Beck et al., Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 109, 142501 (2007)
- 4. B.R. Beck et al., Improved value for the energy splitting of the ground-state doublet in the nucleus 229mTh, LLNL-PROC415170 (2009)
- 5. B. Seiferle et al., Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019)
- 6. A. Yamaguchi et al., Energy of the 229Th nuclear clock isomer determined by absolute γ -ray energy difference. Phys. Rev. Lett. 123, 222501 (2019)
- 7. T. Sikorsky et al., Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020)

1-5.アイソマー状態からの脱励起真空紫外 (VUV)光の検出方法

1-6. VUV光検出セットアップ

X-ray@SPring-8

→SPring-8実験で生成できたアイソマー数:

~1.6×10⁵/set

→ ²²⁹Th アイソマーシグナルを得るために必要なパワーは~10 µJ

¹10 GHz

1k Hz

Excitation width

Hz

2-2. VUV光生成の原理

J. Thielking et al., New J. Phys. 25, 083026 (2023).

共振器長をミラーからの透過が最大となるようにPZTを操作し、シード光とポンプ光を入射

透過特性の共振器長依存性(緑線) $F = \frac{FSR}{FWHM} = \frac{39.6}{2.8} = 14.1$ 透過率からの計算値は15.1

パルシングを確認(赤線)

シード光を止めるとパルス 強度が下がった

ファブリペロー干渉計でシード 光と同じ波長が得られているか 確認

→シード光からの誘導放出で レーザー光が得られている事を 確認(青線)

※黄色はレーザー強度を安定させるシステムに 関係するシグナル

2-6. パルスエネルギー評価

ポンプ光エネルギーとアウト プットパルスエネルギーの関係

VUVレーザーシステムにインス トールできるレベルの性能かク イックに確認 →今後も進めていく予定

まとめ

□²²⁹Th原子核時計は、超高精度測定を可能にし新しい物理法則の発見 に貢献する可能性を有している。

■現在アイソマー準位励起レーザーの開発に取り組んでおり、VUV レーザーシステムに組み込む予定のIRパルスレーザー開発に着手した。

□今後は実際に4光波混合によってVUVレーザーを得られるか試みる 予定。

□レーザーの狭線幅化

BACK UP

Amnon Yariv,Pchi Yeh 他, "ヤリーヴ-イエー 光エレクトロニクス 基礎編"第六版, 丸善株式会社 (2010) 🧃

$$F = \frac{\pi (R_{tot})^{\frac{1}{4}}}{1 - (R_{tot})^{\frac{1}{2}}} = \frac{\text{FSR}}{\text{FWHM}}$$

「1秒」の定義の更新 相対論的測地学 微細構造定数の時間依存性の検証 ダークマター、ダークエネルギーの検証 など...

Concept	Accuracy	Stability (τ in s)	$ au_{\min}^*$
Single ion	$\sim 1\cdot 10^{-19}$	$\sim 5\cdot 10^{-16}/\sqrt{ au}$	$\sim 290 \text{ days}$
Multiple ion	$\sim 1\cdot 10^{-19}$	$\sim 5\cdot 10^{-17}/\sqrt{ au}$	$\sim 2.9 \text{ days}$
Crystal lattice	$\sim 2\cdot 10^{-16}$	$\sim 4.5 \cdot 10^{-13} / \sqrt{\tau^3}^{**}$	$\sim 170 \text{ s}$
Internal conversion	$\sim 2\cdot 10^{-16}$	$\sim 7\cdot 10^{-15}/\sqrt{\tau}^{***}$	$\sim 1200 \text{ s}$

L. Wense et al., Eur. Phys. J. A 56, 277 (2020).

OUR RECENT RESULTS

number of events

Isomer excitation from the ground-state

VUV detection setup