

高輝度 LHC-ATLAS 実験に向けた 初段ミューオントリガー試験システムの構築

成川 佳史 (東京大学)

2024年 2月21日 (水) 第30回 ICEPP シンポジウム

- 高輝度LHC-ATLAS実験における初段ミューオントリガー
- シングルボード試験システムの開発
- MCデータを用いたトリガー回路の性能検証
- まとめ

高輝度LHC-ATLAS実験

- LHC 加速器
 - 周長 26.7 kmの陽子-陽子衝突型加速器

ノシティ	世郷最高エネリトギー	初設合もガーレイテンシー	
² S ⁻¹)	(kHz)	の (μs)	
10 ³⁴	100 個位 (10 個) 100 40 MHz の頻度でバン	の協了) 2.5 ンチ交差	
x 10 ³⁴	1000	10	
■ 2	029年から高輝度 LF	IC - ATALS 実験が始	まる

	LHC (Run3)	HL-LHC
Energy [TeV]	13.6	14
Peak luminosity [cm ⁻² s ⁻¹]	2×10^{34}	$5 - 7.5 \times 10^{34}$
Integrated luminosity [fb^{-1}]	350	3000 - 4000

Thin Gap Chamber (TGC)

ATALS実験におけるトリガーシステム

- 40 MHz の 交差で生じる全ての信号を記録することは不可能 (~80 TBps)
- 陽子陽子衝突の全断面積に対して、興味のある事象の断面積は極めて小さい
 - ➡ 重要な衝突事象のみをオンラインで選別するトリガーシステムが重要

2024/2/21

TGC 検出器の概要

or

EN GC sec art

- ■ミューオンの位置、横運動量を測定する初段ミューオントリガー用検出器 EOS/EC • R方向 (ワイヤー), φ方向 (ストリップ) 5002次元読み出しMWPC (~32万チャジネル)
 - ビーム軸方向に3つのステーション、2層または3層のガスチェンバー
 - •初段トリガーアップグレードに伴い、読み出し・ト^{ドリ}ガ⁷⁸エレクトロニクスを刷新
 - 。読み出しの高度化 (1MHzの高速読み出し、<u>10 uś</u>の/ヾ゚゚ッファー)
 - 。トリガーの高度化 (3ステーション全てのビットを利用した柔軟なロジック)

30 th ICEPP

Sector Logic (SL)の概要

Virtex Ultrascale+ FPGA

- •4つのシリコンダイ
- ~ 10 Gbps x 128 ch の I/O
- 読み出し、トリガー

Zynq Ultrascale+ MPSoC

- ・プロセッサー領域にLinuxを起動
- イーサーネット通信
- FPGAに対する制御マスター

2024/2/21

初段ミューオントリガー論理回路

- 衝突点から飛来するミューオンはトロイド磁場で曲げられる
 - →飛跡の曲げられた"角度"を用いて 横運動量 (p_T)を概算
 - •6段の連続的なモジュールによる演算で実装される大規模なロジック
 - 各ステーションのヒット点の組み合わせからLUTを利用して飛跡の角度を算出
 - ワイヤー・ストリップでそれぞれ算出した角度情報から *p*_T を概算

トリガー論理回路のリソース使用量

SLリソース使用量

	CLB (%)	BRAM (%)	URAM (%)
SLR 3	50.1	33.2	20.3
SLR 2	93.25	80.2	51.6
SLR 1	99.2	28.9	50
SLR 0	91.6	74.4	51.6

30 th ICEPP シンポジウム

2024/2/21

シングルボード試験システムの開発 ■これまでにトリガー論理回路開発が進められてきた ➡実機を用いた動作検証・性能評価が重要 ■ ~ (試調 **Candidate Selector** LO Buffer Derandomizer **Event Builder** & Serializer SoCを活用したシングルボード試験システムを新たに開発

2024/2/21

ファームウェア実装

- 全体像
 - MPSoC上のLinuxを起点にデータ入力、出力の読み出しを制御

2024/2/21

ファームウェア実装

- トリガー中間データ読み出し回路
 - 中間データをスイッチで切り替えて読み出し可 -> 詳細なデバッグ
 - FPGAからSoC上のBRAMにダンプ

アプリケーション実装

■ MPSoC上のLinuxで走らせるapp (C++)

2024/2/21

トリガー検証機構の全体像

実機とシミュレーターの出力を系統的に比較することで盤石な検証を実現

開発した試験システムを用いた性能検証

■ 大統計量のシングルミューオンMCデータを用いた詳細な試験

• 500 K イベント、パイルアップなし、0 < $p_{\rm T}$ < 50 GeV flat、検出器全領域 flat

✔ 期待通りの高いトリガー効率 (~94 %)を達成

✓ 実機とシミュレーターが高い精度で一致

- Low p_{T} イベントの除去効率が低い

- 高輝度LHC-ATLAS実験に向けて初段ミューオントリガー回路を刷新
- 実装した論理回路に対する実機を用いた動作検証・性能評価が必要
- SoCを起点に試験を完結させる、シングルボード試験システムを開発
 - トリガー回路へのテストパターン入力
 - トリガー中間データ読み出し回路
 - 高速読み出しのための工夫
 - アプリケーション実装
 - ➡ 大統計のMCデータに対するトリガー応答を実機を用いて試験可能に
- ■大部分の領域で期待されるトリガー効率を実現できていることを初めて確認 一部の不具合に対するデバッグに取り組み中

初段トリガーアップグレード

■ 初段トリガーシステムがアップグレード

- トリガーレート : 100 kHz -> 1 MHz
- トリガーレイテンシー: 2.5 μs -> 10 μs

開発した試験システムを用いた性能検証

■ $p_{\rm T}$ > 20 GeV イベントに対するWire コインシデンスのEfficieny

2024/2/21

現在までの到達点

■ *p*_T 閾値ごとのトリガー効率 (フォワード領域)

- Low $p_{\rm T}$ ミューオンに対する誤った $p_{\rm T}$ 閾値判定に関する調査 (LUT)

- エンドキャップ領域に存在する局所的なInefficiencyの修正(論理回路)

2024/2/21

2024/2/21

/15

TGC 検出器エレクトロニクス

- •ASD (~2万3000枚):閾値電圧との比較によりデジタル信号を生成
- PS board (1434枚) : 陽子バンチ交差と同期、ヒットビットマップ生成
- •SL (48枚) :横方向運動量の概算、読み出し、前段回路の制御

開発した試験システムを用いたトリガー回路デバッグ

- 大統計量のシングルミューオンMCデータに対するトリガー効率を測定
 - •現実的な物理過程 (チェンバーを素通り、多重散乱) を考慮したトリガー性能
 - ・500 K イベント、0 < $p_{\rm T}$ < 50 GeV flat、検出器全領域 flat

- ✓ 実機とシミュレーターが高い精度で一致
- 局所的なInefficiency →調査の結果LUTの不具合が疑われ、修正中

2024/2/21

無限運動量飛跡を用いた動作検証

- 無限運動量飛跡
 - 直線飛跡を模した試験用のデータ
 - Wire 7層、Strip 6層全てのヒット
 - ▶100 %再構成されるべきデータセット

■ 網羅的な検証

- ワイヤー・ストリップで張られる全ての
 2次元格子点に対して試験用データを用意
- 各トリガーモジュールの応答を順に確認

-> 論理回路実装におけるミスを洗い出す

Endcap : 579 x 63 = 36,477 点 Forward : 243 x 63 = 15,309 点

2024/2/21

無限運動量飛跡を用いた動作検証

結果

	SL 実機	シミュレーター
Strip Segment Reconstruction	100%	100%
Wire Segment Reconstruction	99.8%	100%
Wire Strip Coincidence	97.6%	100%

✓ Strip の コインシデンスロジックは期待通り実装が完了している

- ✓ 実機の試験システム自体の動作
- Wire のコインシデンスロジックでは再現性のないInefficiency
- Wire Strip Coincidenceでは特定のチャンネルに対するInefficiency