次世代電子陽電子コライダー用 高精細シンチレータカロリメータの大型試作機の ビーム試験による性能評価 _{東京大学 M1 高津大誠}

Taisei Takatsu, Tatsuki Murata, Wataru Ootani^A, Toshinori Mori^A, Ryunosuke Masuda, Tohru Takeshita^B, Yazhou Niu^{CD}, Yunlong Zhang^{CD}, Jianbei Liu^{CD}, Mingyi Dong^{CE}, Zhigang Wang^{CE}, Yong Liu^{CE,} Zhigang Wang^{CE}, Yong Liu^{CE,} Haijun Tang^F

UTokyo, ICEPP^A, Shinshu University^B, State Key Laboratory of Particle, Detection and Electronics^C, USTC^D, IHE^E, Shanghai Jiao Tong University^F

> February 21, 2024 30th ICEPP Symposium

Contents

• Introduction

- Motivation
- PFA
- Sc-ECAL technological prototype
- AHCAL technological prototype
- Beam Test Experiment
- Analysis
 - Calibration
 - Alignment
- Summary

Motivation

- The necessity of a Higgs factory
 - Completeness and Verification of the Standard Model
 - Exploration of New Physics
- Proposed Higgs Particle Measurement at e+ e- Colliders
 - International Linear Collider (ILC)
 - Circular Electron Positron Collider (CEPC)
 - Etc..
- Requirement
 - A high granularity calorimeter
- Our study
 - Performance analysis of the large prototype beam test experiment for a high granularity scintillator calorimeter

ILC in Japan

CEPC in China

Particle Flow Calorimetry

- Particle Flow Algorithm (PFA)
 - Choose sub-detector best suited for each particle type
 - Reduce the role of hadron calorimetry for energy measurements
 - Require good separation power of close-by particles in calorimeters to match with tracker
- High-granularity calorimetry for PFA
 - Hardware challenge: readout channels on the order of 10~100 million
 - Integration challenges: compact (fully inside coil), hermetic, lim space for instrumentation

\rightarrow A high granularity calorimeter is required

4

ECAL(**Electromagnetic Cal**orimeter)

- Sc-ECAL(Scintillator-based Electromagnetic Calorimeter)
 - based on strip-shaped plastic scintillator readout by SiPM
 - Center dimpled readout based on scintillator strip
 - Virtual segmentation of 5mm × 5mm cell can be achieved by x-y configuration of strips

Sc-ECAL prototype

- Dimensions: Transverse size of approximately 20x20 cm
- Sampling layers: 32 layers
- Channels: 6,720 channels
- Weight: Approximately 350 kg
- Chips used: SPIROC2E
 - Number of chips: 192 chips
- Two types of SiPM are implemented
 - S12571-010P
 - S12571-015P
- Development years: 2016-2020

HCAL(Hadron Calorimeter)

- **CEPC-AHCAL**(Analogue Hadron Calorimeter)
 - based on scintillator cell read out by SiPM with center dimple
- **CEPC-AHCAL** prototype
 - Dimensions: Transverse size of approximately 72x72 cm
 - Sampling layers: 40 layers •
 - Channels: 12,960 channels •
 - Weight: Approximately 5 tons
 - Chips used: SPIROC2E
 - Number of chips: 360 chips •
 - Tile size : 40 * 40 * 3 mm³ •
 - Two types of SiPM are implemented •
 - MPPC S14160-1315PS
 - NDL 22-1313-15-S
 - Development years: 2018-2022

HBU

Beam Test Experiment

- Demonstrate the performance of Sc-ECAL and AHCAL combined system at CERN
- \rightarrow Examine the detector's response in the entire calorimeter
- First successful beam test at CERN SPS H8: Oct-Nov, 2022
 - High energy particle beams: muons, positrons and pions (10 120 GeV)
 - Collected data sets for detector performance and detailed shower studies
 - Found beam purity issue at H8: mixture of positrons and pions/protons
 →we conducted beam test again last year
- Second successful beam test at CERN, 2023
 - SPS: Site 887, H2 beamline
 - muons, electrons and pions(10 350 GeV)
 - April 26th to May 10th
 - PS: Site 157, T9 beamline
 - muons, electrons and pion(0.5 15 GeV)
 - May 17th to 31st

Contents

- Introduction
 - Motivation
 - PFA
 - Sc-ECAL technological prototype
 - AHCAL technological prototype
 - Test Beam Experiment
- Analysis
 - Calibration
 - Alignment
- Summary

Analysis Flow

Full detector simulation and PFA study is planned

30th ICEPP Symposium

Pedestal Calibration(**ECAL**)

- A pedestal-run was conducted, and pedestal obtained • through a random trigger.
- Stable pedestal values were observed across all channels ٠

Times layer15 chip0 chan0 Counts 1400 Times_layer15_chip0_chan0 Entries 11081 Mean 382.1 1200 Std Dev 3.407 1000 800 600 400 200 all runs Ped[ADC] 360 400

200

10

Pedestal Calibration

• The pedestal shows slight temperature dependence, but it's at a level that can be ignored under experimental conditions

Alignment (Slope)

There are two peaks!!

Sc-ECAL

AHCAL

13

Contents

- Introduction
 - Motivation
 - PFA
 - Sc-ECAL technological prototype
 - AHCAL technological prototype
 - Test Beam Experiment
- Analysis
 - Calibration
 - Alignment
- Summary

Summary

- Sc-ECAL and AHCAL combined beam test experiment was conducted at CERN
 - Beam test campaigns at SPS-H2 and PS-T9
 - Collected decent statistics of data samples in the wide energy range
- The pedestal shows slight temperature dependence, but it's at a level that can be ignored under experimental conditions.
- The combined system likely tilted along to beam direction
 - Quantitative evaluation will be conducted
 - Angle correction will be necessary

Back ups

30th ICEPP Symposium

ECAL

	Pixel size	# of pixel
S12571-010P	10 um	10,000
S12571-015P	15 um	4,489

	pixel size	прх
S14160-1315PS	15 um	7,284
NDL 22-1313-15-S	15 um	7,396 * 4

HCAL

HCAL Residual

ECAL Residual

ECAL Residual

30th ICEPP Symposium

ECAL Residual

30th ICEPP Symposium

Energy Resolution

