Spectroscopic factors in the r-process nucleus ¹³⁵Sn

TECHNISCHE UNIVERSITÄT DARMSTADT

CERN-INTC-2024-012, INTC-P-694

Spokespersons: Thorsten Kröll¹ / Kathrin Wimmer² / Liam Gaffney³

¹TU Darmstadt, Germany; ²GSI, Darmstadt, Germany; ³Univ. of Liverpool, UK; ⁴IEM CSIC, Madrid, Spain; ⁵Univ. of Manchester, UK; ⁶ISOLDE, CERN, Switzerland; ⁷KU Leuven, Belgium; ⁸Argonne National Laboratory, USA; ⁹Department of Physics, Univ. of Jyväskylä, Finland; ¹⁰IJCLab, Orsay, France; ¹¹Faculty of Physics, St. Kliment Ohridski University of Sofia, Bulgaria; ¹²CNS, Univ. of Tokyo, Japan; ¹³Faculty of Science, Univ. of Novi Sad, Serbia; ¹⁴Univ. of Warsaw, Poland; ¹⁵Universidad Complutense, Madrid, Spain; ¹⁶College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China; ¹⁷STFC Daresbury Laboratory, Daresbury, Warrington, UK

Region of Interest

¹³⁵Sn – r-process nucleus

- r-process passes region around ¹³²Sn
- abundance pattern depends on both nuclear structure (m, β -T_{1/2}, σ (n), etc.) and astrophysical conditions
 - ... August 2017: neutron star merger identified as (one) astrophysical site
- (d,p) is surrogate reaction for (n,γ)

Neutron capture rates can change average abundances by up to 43%

¹³⁴Sn(n,γ) has no impact
(¹³⁴Sb or ¹³³Sn have!!!)
... but transfer to an even-even nucleus is theoretically easier
... contributes to the overall understanding of (d,p) in this region

	52	¹³⁰ Te	¹³¹ Te	¹³² Te	¹³³ Te	¹³⁴ Te	¹³⁵ Te	¹³⁶ Te	¹³⁷ Te	¹³⁸ Te	¹³⁹ Te
	51	¹²⁹ Sb	¹³⁰ Sb	¹³¹ Sb	¹³² Sb	¹³³ Sb	¹³⁴ Sb	¹³⁵ Sb	¹³⁶ Sb	¹³⁷ Sb	¹³⁸ Sb
z	50	¹²⁸ Sn	¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn	¹³³ Sn	¹³⁴ Sn	¹³⁵ Sn	¹³⁶ Sn	¹³⁷ Sn
	49	¹²⁷ In	¹²⁸ In	¹²⁹ In	¹³⁰ In	¹³¹ In	¹³² In	¹³³ In	¹³⁴ In	¹³⁵ In	¹³⁶ In
	48	¹²⁶ Cd	¹²⁷ Cd	¹²⁸ Cd	¹²⁹ Cd	¹³⁰ Cd	¹³¹ Cd	¹³² Cd	¹³³ Cd	¹³⁴ Cd	¹³⁵ Cd
		78	79	80	81	82	83	84	85	86	87
		Ν									
	R. Surman et al., Phys. Rev. C 79, 045809 (200							(2009			

... new experiment IS742 with ISS approved to repeat at HIE-ISOLDE energies

¹³⁵Sn – ... knowledge and prediction (I)

¹³⁵Sn – ... knowledge and prediction (II)

3/2⁻ state in ¹³⁵Sn ... higher excitation energy expected

S. Sarkar, M. Saha Sarkar, J. Phys.: Conf. Ser. 267, 012440 (2011) 3/2⁻ state in ¹³⁵Sn ... smaller SF predicted

H. K. Wang et al., Phys. Rev. C 107, 064305 (2023)

ISS vs. Miniball + T-REX ... or both!

- Physics case already approved by INTC (IS654) ... exactly 6 years ago CERN-INTC-2018-008; INTC-P-539
- Experiment with Miniball + T-REX in 2019 failed because of no beam CERN-INTC-2019-006; INTC-SR-065

Why now proposed for ISS?

IS654 becomes obsolet?? No!

ISS	Miniball + T-REX
ΔE (FWHM) ≈ 200 keV for protons	ΔE (FWHM) ≈ 6 keV for γ BUT: statistics about a factor
ground state can be measured	of 10 lower (efficiency of Miniball) for γ-tagged protons
NO kinematical compression	BUT: kinematical compression
limited angular coverage only backward hemisphere	near to 4π coverage allows also for elastic scattering particle identification

Differential cross section at 7.5 MeV/u

Optical potentials used: Lohr/Haeberli (Nucl. Phys. A 232, 381) for deuterons Becchetti/Greenlees (Phys. Rev. C 182, 1190) for protons

ISS – ISOLDE Solenoidal Spectrometer

ISS (1.8 T) with ELUM and ionisation chamber

- protons from (d,p) in inverse kinematics emitted in backward direction
- linear motion parallel to beam axis
- cyclotron motion perpendicular to beam axis

Simulation (I)

Simulation (II)

Beam / rate estimate

- Beam
 - molecular beam ¹³⁴Sn³⁴S⁺ from ISOLDE
 - beam energy from HIE-ISOLDE: 7.5 MeV/u
 - intensity on target 10⁴/s
 - contamination with ¹³⁴Sb (A=168 contaminations?) ... other Q value for (d,p)
- \rightarrow no problems foreseen following the TAC comments
- Rate (200 µg/cm² CD₂ target)
 - rate per level: 4-37 protons/shift, \approx 0.5/shift in total spectrum from fusion on C
 - split in 3-6 angular bins (5°-10°)
 - \rightarrow conservatively: 15 counts/shift, 6 angular bins, 24 shifts: 60 protons/bin

(factor 2 more compared to ¹³³Sn K. Jones et al., Nature 465, 454 (2010))

- Main physics aims
 - ΔI and SFs for the strongly populated states
 - excitation energies (possible also with lower statistics)

We request 24 shifts (8 days) of beam time