Zirconium-88 Neutron Absorption Cross Section at n_TOF EAR2

G. Alpar¹, B. Anderson¹, M. Bacak², S. Bakkar¹, J. Balibrea³, A. Casanovas⁴, D. Catlett¹, W. Charlton⁵, C. Domingo-Pardo³, <u>W. Flanagan¹</u>, I. Kelly¹, J. Lapka⁵, C. Lederer-Woods⁶, J. Lerendegui-Marco³, E. Mendoza Cembranos⁷, J. Moldenhauer¹, D. Nolting⁵, A. Parmenter¹, T. Tipping⁵, L. Wilmington¹

¹University of Dallas, USA
 ²European Organization for Nuclear Research (CERN), Switzerland
 ³Instituto de Fisica Corpuscular, CSIC- Universidad de Valencia, Spain
 ⁴Universitat Politècnica de Catalunya, Spain
 ⁵Nuclear Engineering Teaching Laboratory, University of Texas at Austin, USA
 ⁶The University of Edinburgh, United Kingdom
 ⁷Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain

⁸⁸Zr(n,γ) - Background

- In 2019, ⁸⁸Zr was discovered to have a thermal neutron absorption cross section of 861,000 barns (measured) rather than 10 barns (expected).
 - Larger than ¹⁵⁷Gd, ¹⁰B, ⁶Li, ³He
 - \circ Smaller than ^{135}Xe
 - Both ⁸⁸Zr and ¹³⁵Xe are radioactive
- n_TOF EAR2 is uniquely positioned to measure a low energy resonance which explains the large cross section

https://doi.org/10.1038/s41586-018-0838-z

The surprisingly large neutron capture cross-section of ⁸⁸Zr

Jennifer A. Shusterman^{1,2,3}*, Nicholas D. Scielzo¹, Keenan J. Thomas¹, Eric B. Norman⁴, Suzanne E. Lapi⁵, C. Shaun Loveless⁵, Nickie J. Peters⁶, J. David Robertson⁶, Dawn A. Shaughnessy¹ & Anton P. Tonchev¹

⁸⁸Zr(n,γ) – Current Picture

- 2019 LLNL thermal neutron capture σ_T = 861,000 ± 69,000 barns
- 2021 LLNL thermal neutron capture $\sigma_T = 804,000 \pm 63,000$ barns and resonance integral $I = 2,530,000 \pm 280,000$ barns
- 2023 LANL thermal neutron capture $\sigma_T = 771,000 \pm 31,000$ barns and resonance integral $I = 15,210 \pm 670$ barns
 - LANL DICER uses neutron ToF with transmission for energy-resolved measurement
 - Controversy with resonance integral
 - Resonance claimed at 0.171 eV
 - Nature pre-print, under review

Aqueous harvesting of ${}^{88}\mathrm{Zr}$ at a radioactive-ion-beam facility for cross-section measurements

Jennifer A. Shusterman, Nicholas D. Scielzo, E. Paige Abel, Hannah K. Clause, Nicolas D. Dronchi, Wesley D. Frey, Narek Gharibyan, Jason A. Hart, C. Shaun Loveless, Sean R. McGuinness, Logan T. Sutherlin, Keenan J. Thomas, Suzanne E. Lapi, J. David Robertson, Mark A. Stoyer, Eric B. Norman, Graham F. Peaslee, Gregory W. Severin, and Dawn A. Shaughnessy

Phys. Rev. C 103, 024614 – Published 26 February 2021

Kesearch Square

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Discovery of the origin of the enormous 88Zr neutron-capture cross section and quantifying its impact on applications

 scientific reports

OPEN Production of zirconium-88 via proton irradiation of metallic yttrium and preparation of target for neutron transmission measurements at DICER

> Artem V. Matyskin^{1,2⊠}, Athanasios Stamatopoulos³, Ellen M. O'Brien¹, Brad J. DiGiovine^{3,4}, Veronika Mocko¹, Michael E. Fassbender¹, C. Etienne Vermeulen¹ & Paul E. Koehler³

www.nature.com/scientificrepo

⁸⁸Zr(EC)⁸⁸Y and ⁸⁸Y(EC)⁸⁸Sr Background JnTOF

- ⁸⁸Zr electron capture emits a 393keV gamma ray. Ο
- ⁸⁸Y electron capture emits 898keV and 1.836MeV gamma rays. Ο
- Two samples: Ο
- Number of Protons "Test sample" for background studies and setup optimization
 - "Rich" in ⁸⁸Y, which is the dominant background for 0 n TOF measurement and main RP concern.
 - By late March: 0.5 mCi of ⁸⁸Zr and <u>3.2 mCi of ⁸⁸Y</u>
 - "Measurement sample": 0
 - Fresh ⁸⁸Zr for (n, γ) measurement 0
- Pending INTC approval, the 100mCi ⁸⁸Zr sample will be made by 0 LANL directly for this measurement to minimize ⁸⁸Y activity.

⁸⁸Zr 7 February 2024

^{nat}Zr within Kapton tape and

n_TOF EAR2 aluminum ring

Zr Lα1 Si Kα1 CI Kα1 2.5mm 2.5mm 2.5mm FDS Lavered Image Ο Κα1 C Kα1 2 SEM/EDS image of ^{nat}Zr deposition 2.5mm 2.5mn 5

- The ⁸⁸Zr sample is provided by US DOE (LANL) in 2N HCl since zirconium is not water soluble. Ο
- Evaporated into 1cm diameter to balance reaction rate and alignment uncertainty. Ο
 - Sample is zirconium chloride and zirconyl chloride.
 - \circ ZrCl₄ + ZrOCl₂·H₂O
 - Demonstration with ^{nat}Zr shown below. \cap
 - Evaporated between two pieces of Kapton tape for conformal containment. Ο
 - Mounted to aluminum ring. Ο

- o n_TOF EAR2 is uniquely suited to this measurement
 - Fast data acquisition, sufficient fluence
- We intend to use the segmented total energy detectors (sTEDs) in the circle configuration.
 - Able to sustain the very high rates associated to the activity and the high-flux of EAR2
 - Optimum efficiency, segmentation, and sensitivity.
 - Used before for challenging measurements on radioactive targets (⁷⁹Se, ⁹⁴Nb).
 - Able to increase detector stand-off, pending background measurement results.

Measure and Confirm Thermal XS

- Counting rate estimates that include the full beamline simulations of n_TOF EAR2
 - $\circ\;$ This includes the energy resolution function.
- We include the TENDL 2021 database, which is the only library with the updated cross section available at time of the preliminary work
- $\,\circ\,\,$ 1×10^{18} protons for background and 4×10^{18} for signal
- 100mCi ⁸⁸Zr signal sample
 - Assuming the sample is in the beam from week 3 to week 8 after separation:
 - \circ ⁸⁸Zr 84 mCi → 63 mCi
 - \circ ⁸⁸Y 12 mCi → 24 mCi (main background)
- We have simulated the detector efficiency by first generating the cascades using NuDEX and including them into the Geant4 simulations
- Using Geant4 with EAR2 geometry and sTEDs we calculate the detector efficiency >300keV
- 18-20 March test proposed to validate count rate and detector performance.

Zr88(n,g)@EAR2 1250bpd: 3.820e-08 atb 10³≡ 10²≣ 10 Counts/bin/7e12p 10 10 @EAR2 1250bpd: 3.820e-08 a 10 10 Total background **Total Counts** 10^{-} 10^{3} 10⁻² 10^{2} 10^{-1} 10 10^{4} Energy (eV)

88Zr 7 February 2024

Background Suppression

⁸⁸Zr 7 February 2024

Projected Sensitivity

- Able to confirm large thermal neutron cross section
- Probability of confirming preliminary DICER 0.171 eV resonance. First capture-based confirmation!
- Able to search for resonances to ~10eV
- TENDL 2021 does not have the 0.171 eV resonance
 - Using the TENDL 2021 resonance at 7 eV as proxy for higher resonance hunting.
 - \circ D=(C_{7r}-C_B)/Unc(C_{7r}-C_B)

⁸⁸Zr 7 February 2024

• Still optimizing mixture of signal to background counts.

n/7e12p ia ∫\$] 10 Zr88(n.g)@EAR2 1250bpd: 3.820e-08 atb

10 10 Eneray (eV)

 10^{2}

10³

Pending INTC:

- Test sample at <u>CERN ~7 MAR</u>.
 - Beam-off tests planned 13-17 MAR.
 - Test DAQ, dead time, etc.
 - <u>Beam-on test planned 18-20 MAR</u>.
 - First 3 days of beam at n_TOF EAR2.
- \circ Shipped by UT NETL Reactor using ALARA Logistics.
- CERN radship request document #830
- Draft DGD and Safety Manual
 - Second draft of Safety Manual to CERN RP.

Week		Notes		^{nat} Zr tests, chemistry prep, hot cell prep
8 JAN		Background sample leaves LANL		Background sample prep
15 JAN		Background sample arrives at UT NETL		Beam-off tests (background)
22 JAN				Beam-on tests (background)
29 JAN				Background sample leaves LANL
5 FEB		INTC mtg 7-8 FEB WF at CERN 9 FEB	Δ	Background sample arrives at UT NETL
12 FEB			+	Background sample leaves UT NETL (NLT)
19 FEB			\$	Background sample arrives at CERN (NLT)
26 FEB	+	Background sample leaves NETL for CERN	æ	Finalize desired ⁸⁸ Zr activity with LANL
4 MAR	\$	WF at CERN 7-19 MAR	18-20 March beam time per	nding INTC approval.
11 MAR		Beam-off tests	Signal sample collection anticipated <u>late summer</u> ,	
18 MAR	*	Beam start Beam-on tests	pending intre approval.	

...Signal strategy based on background results...

88Zr 7 February 2024

Backup

³⁵Cl background

- Natural chlorine has a 33 barn cross section
 ^{nat}Cl is 76% ³⁵Cl with 44 barn cross section
- Though Cl atoms outnumber Zr atoms within sample, the ~800,000 barn cross section of ⁸⁸Zr mitigates Cl concerns.

Cross

Sample Prep (continued)

- ZrCl4/ZrOCl2 evaporated onto Kapton tape
- Additional piece of Kapton tape to conformally trap sample
- Mount to aluminum ring
 Standard for n_TOF
- Mount to additional aluminum
 ring on other side to confirm
 Kapton tape does not separate
- Squeeze aluminum rings together with final piece of Kapton tape.

Initial test with natural zirconium in same initial solution. Note that this sample is not yet conformally wrapped.

88Zr 7 February 2024