

(proposal INFN + ENEA in APRENDE)

Study of **n** + ^{63,65}Cu reactions and

their relevance for nuclear technologies and Astrophysics

M. Bacak¹, D. M. Castelluccio^{2,3}, S. Cristallo^{4,3}, P. Console Camprini^{2,3}, M. Diakaki⁵
G. Grasso², A. Guglielmelli⁶, C. Massimi^{7,3}, M. Mastromarco^{3,8}, A. Mengoni^{2,3},
A. Musumarra^{9,3}, M. P. Pellegriti³, M. Pignatari¹⁰, E. Pirovano¹¹, N. Terranova^{2,3},
R. N. Sahoo³, D. Vescovi^{4,3}, and the n_TOF Collaboration

 $^{1}CERN$

- ² ENEA Agency for New Technologies, Energy and Sustainable Economic Development, Italy
 ³ INFN National Institute for Nuclear Physics, Italy
 ⁴ INAF– National Institute for Astrophysics, Italy
 ⁵ NTUA– National Technical University of Athens, Greece
 ⁶ European Commission, Joint Research Centre, Ispra, Italy
 ⁷ Department of Physics and Astronomy, University of Bologna, Italy
 ⁸ Department of Physics, University of Bari, Italy
 ⁹ Department of Physics and Astronomy, University of Catania, Italy
 ¹⁰ Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, HUN-REN & CSFK, MTA Centre of Excellence, Budapest, Hungary
- ¹¹PTB National Metrology Institute, Germany

Spokesperson: Cristian Massimi (massimi@bo.infn.it) Technical coordinator: Olivier Aberle (oliver.aberle@cern.ch)

- Introduction to scientific motivations
- Data in the literature
- Proposed measurements
- > Conclusions

Why 63,65Cu?

Nuclear Technology

Nucl. Techn.

> Nuclear Astrophysics

Nucl. Astro.

⁶³Cu and ⁶⁵Cu very **similar** ➢ ⁶³Cu presented here ➢ ⁶⁵Cu in backup slides

UNIVERSITÀ DI BOLOGNA

Nucl. Techn.

Why 63,65Cu?

TAratura Pila Rapida Potenza ZerO (TAPIRO) research reactor:

- 5 kW power
- U-Mo fuel
- \blacktriangleright Core = 12 cm cylinder
- \geq ²³⁵U enrichment = 93.5%
- ➤ 4x10¹² n/s

Istituto Nazionale di Fisica Nucleare

FAST SPECTRUM

Evaluation benchmark Material test

TAPIRO can play a **pivotal** role **in supporting** the development of fast reactor projects

1,E-02 1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 Energy (ev)

spectrum (a.u.)

3 F-01

2.E-01

Neutron energy s

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Why 63,65Cu?

Nucl. Techn.

TAPIRO: k_{eff} study by MCNP

ENDF/B-VIII.0 \rightarrow k_{eff} = 1.00000

63Cu Evaluation	k_{eff}
JEFF3.3	1.00637 ± 0.00001
JENDL-5	1.00147 ± 0.00001
TENDL-2021	1.00102 ± 0.00001

⁶⁵ Cu	Evaluation	k_{eff}
	JEFF3.3	0.99980 ± 0.00001
	JENDL-5	0.99782 ± 0.00001
Г	ENDL-2021	1.00017 ± 0.00001

Why 63,65Cu?

Nucl. Techn.

TAPIRO: k_{eff} study by MCNP

ENDF/B-VIII.0 \rightarrow k_{eff} = 1.00000

1.5 x regulation rod

Nucl. Techn.

TAPIRO: spectral parameters sensitivity & uncertainty study by ERANOS 2.3

Nucl. Techn.

Fusion – study at FNG

Why 63,65Cu?

Conclusions

•••

The present results call for a deep revision/re-evaluation of the copper cross sections. The new release JEFF-3.2 for Cu provided the highest disagreement in the C/E analysis and must be revised. To this end the results of the companion sensitivity/uncertainty post-analysis will help in identifying the main causes of uncertainty in the Cu cross sections. It worth to note that the largest discrepancy among the C/E values was observed for the thermal (capture) reactions suggesting problems and uncertainties in the ^{63,65}Cu capture and elastic cross sections at lower energy rather than at high energy.

C. Massimi - 75th Meeting of the INTC - 7.2.24

Benchmark experiment 14 MeV mentrous Copper cross sections Prateati Neutron Generator Activation technique MCNP Monte Carlo code

Accepted 25 January 2016 Accepted 25 January 2016

Why 63,65Cu?

How copper was produced?

Not clear! Candidates:

- 1. Weak *s* process (Massive stars)
- 2. Main s process (AGB)
- 3. SNe la
- 4. SNe II

The *s* process requires MACS @ kT= 8,25, 90 keV 1.0 0.8 8.0 (%) SACS (%) 0.6 0.2 ENDF-B-VIII.0 (8 keV) ENDF-B-VIII.0 (25 keV) ENDF-B-VIII.0 (90 keV) 0.0 - 10^{-1} 10⁰ 10^{1} 10^{2} 10^{3} 10^{4} Energy (keV)

Stituto Nazionale di Fisica Nucleare

As	tro.		CERN-INTC-2024-006 / INTC-P-689 10/01/2024					
	62_{Ga} 63_{Ga} 116.00 ms 32.40 s β ⁺ β ⁺		⁶⁴ Ga 2.63 m β ⁺	⁶⁵ Ga 15.20 m β ⁺	⁶⁶ Ga 9.49 h β ⁺	⁶⁷ Ga 3.26 d β ⁺	⁶⁸ Ga 1.13 h β ⁺	
	⁶¹ Zn	⁶² Zn	⁶³ Zn	⁶⁴ Zn	⁶⁵ Zn	⁶⁶ Zn	⁶⁷ Zn	
	1.48 m	9.19 h	38.47 m	48.63	243.63 d	27.9	4.1	
	β ⁺	β ⁺	β ⁺	59 mb	162 mb, β ⁺	35 mb	153 mb	
	⁶⁰ Cu	61 <mark>Cu</mark>	⁶² Cu	63Cu	⁶⁴ Cu	65Cu	⁶⁶ Cu	
	23.70 m	3.33 h	9.67 m	69.17	12.70 h	30.83	5.12 m	
	β ⁺	β ⁺	β ⁺	94 mb	β ⁺	41 mb	β ⁻	
	⁵⁹ Ni	⁶⁰ Ni	61 _{Ni}	62 _{Ni}	⁶³ Ni	⁶⁴ Ni	⁶⁵ Ni	
	75.99 ka	26.223	1.14	3.634	100.11 a	0.926	2.52 h	
	87 mb, β ⁺	30 mb	82 mb	22.3 mb	31 mb, β ⁻	8.7 mb	β ⁻	
	⁵⁸ Co	⁵⁹ Co	⁶⁰ Co	61 <mark>Co</mark>	62 <mark>Co</mark>	⁶³ Co	⁶⁴ Co	
	70.86 d	100	5.27 a	1.65 h	1.50 m	27.40 s	300.00 ms	
	β ⁺	38 mb	β ⁻	β ⁻	β ⁻	β ⁻	β ⁻	
	⁵⁷ Fe	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	⁶¹ Fe	⁶² Fe	⁶³ Fe	
	2.119	0.282	44.50 d	1.50 Ma	5.98 m	1.13 m	6.01 s	
	40 mb	12.1 mb	β ⁻	β ⁻	β ⁻	β ⁻	β ⁻	

With accurate determination of Cu MACS, it is possible to clarify what is the s-process contribution to Cu. Once this is done, it will be possible to constrain the Cu production by other nucleosynthesis processes, where stellar and nuclear uncertainties are much larger.

Nucl.

Data in literature

Comment

New rec. value is from HKU08, renormalized by 632 mb/586 mb = 1.0785, and recalculated with normalized energy dependencies of tendl15,endfb71,jendl40. Uncertainty is the deviation between different evaluations plus 4% exp. uncertainty from HKU08. Note the large deviation between the activation measurement and the TOF measurements. More investigation needed! Last review: April 2017

Data in literature

Data in literature

Proposed measurements

Consist of **capture** and **transmission** experiments at **EAR1** using highly enriched samples (99.8% in ⁶³Cu and 99.0% in ⁶⁵Cu)

C. Massimi - 75th Meeting of the INTC - 7.2.24

Proposed measurements

Consist of **capture** and **transmission** experiments at **EAR1** using highly enriched samples (99.8% in ⁶³Cu and 99.0% in ⁶⁵Cu)

Experiment	Sample	Protons	Comments	
Capture	$^{63}\mathrm{Cu}$	$2.0 imes 10^{18}$		
Capture	$^{65}\mathrm{Cu}$	$2.0 imes 10^{18}$		Target:
Capture	$^{nat}\mathrm{Cu}$	$0.3 imes10^{18}$	EAR1 or EAR2	Observe resonances up to 50-
Capture	Empty-sample	$0.2 imes 10^{18}$	background study	200 keV
Capture	Pb	$0.2 imes 10^{18}$	background study	\succ σ_{γ} uncertainty below 3-5%
Capture	\mathbf{C}	$0.2 imes 10^{18}$	background study	
Capture	$^{197}\mathrm{Au}$	$0.1 imes 10^{18}$	normalization	
Transmission	$^{63}\mathrm{Cu}$	$1.0 imes 10^{18}$	"Sample-in"	Target:
Transmission	$^{65}\mathrm{Cu}$	$1.0 imes 10^{18}$	"Sample-in"	\succ σ_{tot} uncertainty below 5% for
Transmission	Empty-sample	$1.0 imes 10^{18}$	"Sample-out"	$E_n > 100$ keV with 100 bpd
		$8.0 imes 10^{18}$		

Conclusion

n+^{63,65}Cu is an intriguing physics case! (new entry in HPRL?)

Capture and transmission @ EAR1

- > $5x10^{18}$ Protons for ${}^{63}Cu(n,\gamma)$ and ${}^{65}Cu(n,\gamma)$
- > $3x10^{18}$ Protons for ${}^{63}Cu(n,tot)$ and ${}^{65}Cu(n,tot)$

Proton request split into 2 runs over 2 years

e.g., (n,γ) in 2024 and (n,tot) in 2025

Other reactions in future dedicated addendum (if feasible)

Total: 8x10¹⁸ protons on target

Acknowledgement:

- > ERANOS Sensitivity studies by **Donato Maurizio Castelluccio**
- MCNP calculations by Patrizio Console Camprini
- Massive stars sensitivity study by Marco Pignatari

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

ALMA MATER STUDIORUM Università di Bologna

Cristian Massimi

Department of Physics and Astronomy

cristian.massimi@unibo.it

www.unibo.it

Natural abundance: ⁶³Cu 69.2 %

Prodotti della reazione	Q-valore (keV)
$\overline{^{63}Cu+n}$	0
$^{64}Cu + \gamma$	7915.9 ± 0.6
$^{60}Co + \alpha$	1717.0 ± 0.6
${}^{63}Ni + p$	715.4 ± 0.6

Istituto Nazionale di Fisica Nucleare

Why 63,65Cu?

Nucl. Techn.

TAPIRO: ERANOS \rightarrow S/U analysis

Sensitivity and Uncertainty (S/U) analysis was performed using the deterministic code ERANOS 2.3, for:

UNIVERSITÀ DI BOLOGNA

C. Massimi - 75th Meeting of the INTC - 7.2.24

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare

C. Massimi - 75th Meeting of the INTC - 7.2.24

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare

Uncertainties in a capture experiment

Mastromarco et al., Eur. Phys. J. A (2019) 55:9

Table 3. Summary of the correlated uncertainties in the ${}^{155}Gd(n, \gamma)$ and ${}^{157}Gd(n, \gamma)$ cross section measurements.

Source of	155($\operatorname{Gd}(\mathrm{n},\gamma)$	$^{157}\mathrm{Gd}(\mathrm{n},\gamma)$			
uncertainty	near thermal	resonance region	near thermal	resonance region		
Normalization	1.2%	1.2%	1.2%	1.2%		
PHWT	1.5%	1.5%	1.5%	1.5%		
Background	1.4%	$\approx 1\%$	1.0%	$\approx 1\%$		
BIF	1.5%		1.5%			
Flux	1.0%	1.0%	1.0%	1.0%		
Sample mass	1.0%	< 0.2%	2.1%	< 0.2%		
Temperature		1%		1%		
Total	3.2%	2.6%	3.5%	2.6%		

Istituto Nazionale di Fisica Nucleare

Countrate

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

ô

Transmission

6	🔄 n	Display	Year Author-1	Energy	range,eV	Points	F	Reference	Subentry#P NSR-Ke	y Info+
E	1)	🗓 🔎 29-CU-6	3(N,TOT),,SIG C4: MF=3	MT=1 Op=	=0					
	Quanti	ity: [CS] Cros	s section							
	1 🗌	+ i X4 X4+	± CSV)+ T4 Cov 1977 M.S.	Pandey+	5.00e1		1	+ J,PR/C,15,600,197703	2 10725002 [6] 1977 PA	.04
	2	+ i X4 X4+	± CSV)+ T4 Cov		3.83e3	1.12e6	12165		10725012 [5] 1977PA	.04
	3	+ i X4 X4+	± CSV)+ T4 Cov		3.16e1	1.85e5	6208		10725014 [4] 1977PA	.04
	4	+ i X4 X4+	± CSV)+ T4 Cov 1972 A.I.	Dyumin+	1.42e7		1	+ J,IZV,36,852,1972	40149011 [6] 1972DY	02 #2:1972dy02 #3:pdf
	5	+ i X4 X4+	± CSV)+ T4 Cov 1968 G.Ro	hr+	3.98e4	1.43e5	880	+ P,EANDC(E)-89,1,680	2 20151002 [5]	
g	* 6	+ i X4 X4+	± CSV)+ T4 Cov 1966 W.M.	Good+	2.06e3	5.95e4	299	+ J,PR,151,912,1966	11626024 [5] 1966GC	38
	7	+ i X4 X4+	± CSV)+ T4 Cov 1957 H.Ma	rshak+	1.10e3	9.72e4	164	+ J,PR,106,110,57	11640010 [4] 1957MA	.59
E	2)	1 🔎 29-CU-6	3(N,TOT),,SIG,,AV C4:	MF=3 MT=1	Op=0					
	Quanti	ity: [CS] Cros	s section							
	8	+ i X4 X4+	± CSV)+ T4 Cov 1975 V.V.	Filippov	5.00e4	9.50e5	11	[pdf]+ C,75KIEV,2,53,19750	5 41301002 [6]	
e	3)	🛈 🔎 29-CU-6	3(N,TOT),,SIG,,RES C4:	MF=3 MT=1	Op=0					
	Quanti	ity: [CS] Cros	s section at resonance							
	9	+ <u>i X4 X4+</u>	± CSV)+ T4 Cov 1958 R.E.	Cote+	5.77e2	5.39e3	3	+ J,PR,111,288,58	116410182 [4] 19580	069
e	304)	🗓 🔎 29-CU-6	3(N,TOT),,TRN C4: MF=3	MT=? Op=	=0					
	Quanti	ity: [CS] Tran	smission							
	10	+ <u>i X4 X4+</u>	± CSV)+ T4 Cov 2013 K.Ka	uwenberghs+	1.50e2	9.00e4	21528	+ R,EUR-26479,2013	23325002 [1]	
	11 🗌	+ <u>i X4 X4+</u>	± CSV)+ T4 Cov		1.50e2	9.00e4	21528		23325003 [1]	
	12	+ i X4 X4+	± CSV)+ T4 Cov		1.50e2	9.00e4	21528		23325004 [1]	
e	□ 05) 🙂 🔎 29-CU-63(N,TOT),,WID C4: MF=402 MT=60100p=0									
	Quantity: [RP] Resonance width									
	13		CON), TAL 1050 D D O.L.	·	77-0 5 0	0-0-0		· T DD 111 000 F0	116410102 (*** 10500059	
L	ist of	PHYSICA	AL REVIEW C	VOL	UME 15,	NUME	BER 2	FEBRU	JARY 1977	

Neutron total cross sections and resonance parameters of ⁶³₂₉Cu and ⁶⁵₂₉Cu. I*

M. S. Pandey[†] and J. B. Garg[‡] State University of New York at Albany, Albany, New York 12222

J. A. Harvey Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 8 April 1976)

High resolution neutron total cross sections of the isotopes of copper have been measured from about 10 to 150 keV using 5 nsec electron pulses and a flight path of 78.2 m. From the area and shape analysis of the transmission and total cross section data, precise values of the resonance parameters, such as E_0 , Γ_n^0 , Γ_n^1 , J^π , etc., have been determined. For example, for ⁶³Cu many s-wave resonances have been observed from 10 to 150 keV giving values of $\langle D \rangle_{J=1} = (2.7 \pm 0.3)$ keV, $\langle D \rangle_{J=2} = (4.0 \pm 0.5)$ keV, $\langle D \rangle_{J=1+2} = (1.63 \pm 0.13)$ keV, $S_{0J=1} = (3.0 \pm 0.6) \times 10^{-4} \text{ eV}^{-1/2}$, $S_{0J=2} = (2.0 \pm 0.5) \times 10^{-4} \text{ eV}^{-1/2}$, $S_{0J=1,2} = (2.5 \pm 0.4) \times 10^{-4} \text{ eV}^{-1/2}$. For ⁶⁵Cu s-wave resonances were observed giving values of $\langle D \rangle_{J=1} = (3.6 \pm 0.4)$ keV, $\langle D \rangle_{J=2} = (5.0 \pm 0.7)$ keV, $\langle D \rangle_{J=1+2} = (2.12 \pm 0.19)$ keV, $S_{0J=1} = (2.9 \pm 0.6) \times 10^{-4} \text{ eV}^{-1/2}$, $S_{0J=2} = (1.8 \pm 0.5) \times 10^{-4} \text{ eV}^{-1/2}$, $S_{0J=1,2} = (2.3 \pm 0.4) \times 10^{-4} \text{ eV}^{-1/2}$.

