Consiglio Nazionale delle Ricerche

Emission Mössbauer spectroscopy of topological kagome magnets (INTC-P-687)

Roberto Mantovan¹, Anastasios Markou^{2,3}, **Edouard Lesne**³, Claudia Felser³, Haraldur Pall Gunnlaugsson⁴, Hilary Masenda⁵, Juliana Schell^{6,7}, Ian Chang Jie Yap⁷, Adeleh Mokhles Gerami^{6,8}, Carlo Grazianetti¹, and The Mössbauer collaboration at ISOLDE/CERN⁹

¹CNR-IMM, Unit of Agrate Brianza (Italy), ²Department of Physics, University of Ioannina (Greece), ³Max Planck Institute for Chemical Physics of Solids, Dresden (Germany), ⁴Science Institute, Univ. Iceland, ⁵School of Physics, University of the Witwatersrand (South Africa), ⁶European Organization for Nuclear Research (CERN), ⁷Institute for Materials Science and Center for Nanointegration Duisburg-Essen (Germany), ⁸School of Particles and Accelerators, Institute for Research in Fundamental Sciences (Iran), ⁹https://e-ms.web.cern.ch/content/collaborators

in

Summary

- Motivation & open questions
- Preliminary results
- Experimental plan to answer open questions

Emission M

Hyperfine Interaction stu Radioactive probes: ${}^{57}M$ ${}^{119}In \rightarrow {}^{119}Sn (T_{1/2} = 2.4 min)$

Mössbauer drive system and detector Incoming 40-60 keV ⁵⁷Mn⁺ beam Intensity: ~2×10^{8 57}Mn⁺/cm²

Mössbauer drive with resonance detector

Implantation chamber

Sample

vith r

Kagome magnets

orders

'Kagome' lattice is a two-dimensional (2D) lattice of corner-sharing triangles, consisting of 3d transition metar atoms (T: Fe, Mn, Co) with spacefilling atoms (X: Sn, Ge) at the centre of the hexagon

nd structure of kagome lattice typically exhibit ac points (DP) at the K-point, van Hove contarities (vHs) at the M-point, and a flat band access the whole Brillouin zone

study and exploit topology, correlated phenomena such as magnetism, and potential instabilities towards long-range many-body

e₃Sn₂, Fe₃Sn, Mn₃Sn

Open issues

Z. Hou et al., Adv. Mater. 29, 1701144 (2017) K. Heritage et al., Adv. Funct. Mater. 30, 1909163 (2020)

Fe₃Sn₂: Spin-reorientation is thought at the or formation, as due to T-dependent magnetic ani: atomic-scale view is missing

Fe₃Sn: New rare-earth free permanent magnet magnetic anisotropy desired). In bulk Fe₃Sn, I oriented and planar magnetization was observe ...reflecting controversies on the nature of n anisotropy

Mn₃Sn: Large anomalous Hall effect at RT **Spin-reorientation** from in-plane non collinear AFM order to out-of plane spinspiral structure at 260 K, and transition T is affected by Fe doping ($Mn_{3-x}Fe_xSn$)and **atomic-scale view is missing**

Fe₃Sn₂ vs Fe₃Sn (room temperature)

Main observations:

1) The implantation-induced damage does not prevent the **observation of clear magnetic components**

2) ⁵⁷Mn eMS is **sensitive to stoichiometry** changes at magnetic sites

Fe₃Sn₂ vs Fe₃Sn

Many MS papers on bulk, very few on films

3. Fe₃Sn₂ Structure. Electric field gradient (EFG) tensor

Fe₃Sn₂ belongs to the rhombohedral system, space group $R\overline{3}m$ with Z = 6 in a hexagonal unit cell of dimensions a = b = 5.344 Å, c = 19.845 Å (Malaman *et al* 1976). This structure can be described as a particular stacking of the hexagonal unit cell of FeSn. This latter unit is repeated in the *c* direction with a shift $(\frac{2}{3}, \frac{1}{3}, \frac{1}{3})$ and $(\frac{4}{3}, \frac{2}{3})$ (figure 1)

There is only one crystallographic site for iron in Fe–Sn planes while tin occupies two crystallographically nonequivalent positions: Sn(1) in Fe–Sn planes and Sn(2)

G Le Caer et al 1978 J. Phys. F: Met. Phys. 8 323

Fe₃Sn₂

Table 1	I. Hyperfir	ne paramete om tempera	ers of Fe ₃ ture	Sn ₂ :
H (kOe)	€(mm s	$\delta(mm)$	s^{-1}) Γ_1	(mm s ⁻¹)
- 200 ± 1	$\begin{array}{c} 0.095 \\ \pm 0.004 \end{array}$	0.330 ± 0.002	0.2 ±0.0	27)1
Γ_2 (mr	n s ^{- 1})	$\Gamma_5 (\mathrm{mm}\mathrm{s}^{-1})$	Γ_6 (m	1m s ⁻¹)
$0.30 \\ \pm 0.02$	±'	0·25 0·01	$0.30 \\ \pm 0.02$	

Fe₃Sn₂: eMS vs conversion electron-MS (CEMS)

eMS of Fe₃Sn₂ shows additional "sharper" magnetic component \rightarrow From Sn₂ layers? (..."selective" m doping of stane New open New open «born» question «born» question (born) CEMS of Fe₃Sn₂ shows a very

similar spectra to eMS of Fe₃Sn

Magnetic stanene?

Fe-absorbed stanene is a **bipolar magnetic gapless semiconductor** with up-spin electron and down spin hole carriers to support the coexistence of the charge current and the pure spin current.

Spin polarization induced by Fe at «hollow» sites

Tunable electronic and magnetic properties in stanene by 3d transition metal atoms absorption

Dan-Xu Xing, Ceng-Ceng Ren, Shu-Feng Zhang, Yong Feng, Xin-Lian Chen, Chang-Wen Zhang, Pei-Ji Wang^{*}

School of Physics, University of Jinan, Jinan 250022, People's Republic of China

Theoretical paper (2017) without experimental follow-up

Experimental plan

System to be studied (thickness in hours with hours with hours with number of samples *parentheses*) HT-lid LT-lid ROT-lid substrate/buffer(Ru, ≤4nm)/**Fe**₃**Sn**₂ ≥ 2 (at least 2 5 4 6 thicknesses) $(\geq 50 \text{nm})/\text{capping}(\leq 3 \text{nm})$, sputtering ≥ 2 (at least 1 per each 5 substrate/buffer(Ru, Pt ≤4nm)/**Fe**₃**Sn** 4 6 $(\geq 50 \text{nm})/\text{capping}(\leq 3 \text{nm})$, sputtering buffer) substrate/buffer(Ru ≤4nm)/**Mn**₃**Sn** ≥ 2 (at least 2 5 4 6 thicknesses) $(\geq 50 \text{nm})/\text{capping}(\leq 3 \text{nm})$, sputtering ≥ 2 (at least 2 5 substrate/buffer(Ru, Pt 4 6 ≤ 4 nm)/**Fe**₃**Sn**₂/capping, MBE thicknesses or buffer)

<u>HT-lid</u>: eMS up to 600-700 K \rightarrow full characterization of atomic-scale magnetism up to the Curie temperature. To carefully follow (and compare) the evolution of the DIST and SEXT components in Fe₃Sn₂ and Fe₃Sn will be fundamental to **get insight into the nature of SEXT observed in Fe₃Sn₂**

LT-lid: eMS down to ~100 K \rightarrow follow the hyperfine magnetic field evolution at low T to explore the **atomic-scale origin of spin reorientation processes**

<u>**ROT-lid</u></u>: eMS at variable angles, with or without an applied magnetic field of ~ 0.6 \text{ T} \rightarrow determine the nature of magnetic interactions**, to study the **magnetic anisotropies**, and to determine **site symmetry** of paramagnetic doublets</u>

Experimental plan

System to be studied (thickness in parentheses)

substrate/buffer(Ru, ≤4nm)/**Fe**₃**Sn**₂ (≥50nm)/capping(≤3nm), sputtering

substrate/buffer(Ru, Pt ≤4nm)/**Fe₃Sn** (≥50nm)/capping(≤3nm), sputtering

substrate/buffer(Ru ≤4nm)/Mn₃Sn
(≥50nm)/capping(≤3nm), sputtering

substrate/buffer(Ru, Pt ≤4nm)/**Fe**3**Sn**2/capping, MBE

number of samples	hours with HT-lid	hours with LT-lid	hours with ROT-lid
≥2 (at least 2 thicknesses)	5	4	6
≥2 (at least 1 per each buffer)	5	4	6
≥2 (at least 2 thicknesses)	5	4	6
≥2 (at least 2 thicknesses or buffer)	5	4	6

Fe₃Sn: probe the role of buffer layers (Ru, Pt) in stabilizing different strain states, i.e. Fe₃Sn is expected to be compressively strained by -1.2% vs tensely strained by + 0.85%, when grown on Pt vs Ru buffer layers respectively

We plan thickness in the range of $30 \div 100$ nm. Thicker layers will experience strain relaxation towards their bulk lattice parameters, while intermediate thicknesses will likely show some strain gradient. From TRIM: we're mostly sensitive to the first $20 \div 30$ nm closer to the surface \rightarrow by comparing experiments in samples of ~ 30 nm and > 80 nm \rightarrow we'll probe the influence of structural distortions on the hyperfine parameters, an information hardly accessible by CEMS, as did previously for Fe/V superlattices [*T. E. Mølholt et al., Crystals 12, 961 (2022)*]

Final objective is to answer open questions:

- Can we induce magnetic ordering in Sn₂-stanene layers in Fe₃Sn₂?
- What is the atomic-scale origin of **spin reorientation** in Fe₃Sn₂ thin films?
- What is the atomic-scale origin of the magnetic anisotropy in Fe_3Sn and Mn_3Sn ?
- What is the effect of dilute Fe-doping on the magnetic anisotropy in Mn₃Sn?
- What is the **effect of kagome's dimensionality** (i.e. thickness) on their electronic and magnetic properties?

Request: 9 shifts of ⁵⁷Mn + 2 shifts of ¹¹⁹In

Extra slides

Emission Mössbauer spectroscopy @ISOLDE/CERN

A unique method to investigate **atomic-scale chemical-structural-magnetic properties of materials** in ultra-dilute implantation regime (10⁻³÷10⁻⁵ at.%)

>50 research papers have been published https://e-ms.web.cern.ch/content/publications From 2014... several new groups worldwide got interested in eMS and joined the team → new materials, new ideas, new collaborations...

(top) Top view of an individual Fe₃Sn layer with kagome structure (bottom) Sn₂ layer with honeycomb structure ("stanene")

Fe₃Sn layer

Sn₂ layer

a

+1

500 nm

Side view of the crystal structure of Fe₃Sn₂ consisting of alternating stacking of two Fe₃Sn kagome layers and one Sn₂ layer

Article Open access Published: 15 November 2022

Plethora of tunable Weyl fermions in kagome magnet Fe₃Sn₂ thin films

Intrinsic anomalous Hall effect in thin films of topological kagome ferromagnet FezSn2⁺

RETURN TO ISSUE < PR

< PREV LETTER</pre>

Spin-Orbit Torque in Bilayers of Kagome Ferromagnet Fe₃Sn₂ and Pt

NEXT >

Igor Lyalin, Shuyu Cheng, and Roland K. Kawakami*

Cite this: Nano Lett. 2021, 21, 16, 6975–6982
 Publication Date: August 12, 2021 ~
 https://doi.org/10.1021/acs.nanolett.1c02270
 Copyright © 2021 American Chemical Society
 Request reuse permissions

Article Views	Altmetric	Citations	Share	Add to	Export
2741	-	5			RIS
LEARN AB	OUT THESE ME	TRICS	\bigcirc	\smile	\smile

ADVANCED QUANTUM TECHNOLOGIES

Full Paper 🔂 Open Access 💿 🛈

Room-Temperature Skyrmion Thermopower in Fe₃Sn₂

Qianheng Du 🔀, Myung-Geun Han, Yu Liu, Weijun Ren, Yimei Zhu, Cedomir Petrovic 🔀

First published: 11 September 2020 | https://doi.org/10.1002/qute.202000058 | Citations: 10

https://arxiv.org/abs/2105.12203

Fe₃Sn₂ open issues

LTEM images of the magnetic domain structures:

Spin-reorientation is thought at the origin of skyrmion formation, as due to T-dependent magnetic anisotropy

... an atomic-scale view of spin-reorientation in Fe₃Sn₂ films is missing

Z. Hou et al., Adv. Mater. 29, 1701144 (2017) K. Heritage et al., Adv. Funct. Mater. 30, 1909163 (2020) Stripe domains and skyrmionic bubbles coexist in the sample over the temperature range of 300 to 170 K, after turning off the magnetic field.

Spontaneous skyrmionic bubbles with triple-ring structures and random helicities are observed.

Fe₃Sn open issues

Interest as novel rare-earth free permanent magnet
 → Planar magnetocrystalline anisotropy is undesirable

- From Mössbauer studies on bulk Fe₃Sn, *G. Trumpy et al.* [*PRB 2, 347 (1970)*] claimed that the existence of a single sextet proves the magnetization is directed along the c-axis
- Direct magnetic measurements indicate the existence of planar anisotropy [*B. C. Sales et al., Sci. Rep 4, 7024 (2014)*]

There is a certain controversy on the nature of the Fe₃Sn magnetic anisotropy

Mn₃Sn open issues

Large anomalous Hall effect observed

Hexagonal antiferromagnet

Mn₃Sn is found to show a spin-reorientation from in-plane non collinear AFM order to out-of plane spin-spiral structure at 260 K

In $Mn_{3-x}Fe_xSn$ the spin-reorientation transition temperature shifts

Insight into the atomic-scale view of spinreorientation? + role of Fe-doping?

A. Low et al., Phys. Rev. B 106, 144429 (2022)

Complementary studies (before and after eMS)

- SQUID and/or VSM to measure macroscopic magnetic properties
- X-Ray Diffraction and X-Ray Reflectivity to ensure about the crystalline quality and the epitaxial relationships of the layers, as well as to accurately verify their thickness
- CEMS → the comparison among (i) CEMS before eMS, (ii) eMS, and (iii) CEMS after eMS, will provide the most comprehensive atomic-scale study that can be done in these kagome magnets
- **DFT simulations** will be used to calculate electric field gradient and electron density of Fe and Sn in Fe₃Sn₂, Fe₃Sn, and Mn₃Sn, focusing on various Fe and Sn sites and configurations of defect complexes around them, in order to univocally determine the nature of the observed magnetic components

Growth of Fe₃Sn₂ and Fe₃Sn epitaxial films

- High temperature growth of a 4 nm–thick Ru seed layer on the SrTiO₃ substrate.
- Growth of either 50 nm thick Fe₃Sn₂ and Fe₃Sn epilayers by keeping constant the Sn- power and adjusting the Fe-power.
- Finally, growth of a Si capping layer to prevent oxidation of the films.

MBE of Fe₃Sn₂ @CNR-IMM, Unit of Agrate Brianza

 High technological interest to compare Fe₃Sn₂ as produced with two different thin film depositions' methods

Table of the stopping ranges of 57Mn at 50 keV

Material	Mean	Standard Deviation	Skewness	Kurtosis
Fe ₃ Sn ₂	21.7 nm	11.0 nm	0.2817	2.4001
Fe₃Sn	20.1 nm	10.2 nm	0.3736	2.6032
Mn ₃ Sn	21.9 nm	10.9 nm	0.2728	2.4103

Mn₃Sn

Table of the stopping ranges of 57Mn at 30 keV

Material	Mean	Standard Deviation	Skewness	Kurtosis
Fe ₃ Sn ₂	14.8 nm	8.0 nm	0.5839	3.1096
Fe ₃ Sn	13.4 nm	7.1 nm	0.5710	3.1533
Mn ₃ Sn	14.8 nm	7.9 nm	0.5793	3.1555

 Mn_3Sn

Hyperfine parameters (room temperature)

		iso (mm/s)	qua (mm/s)	<b <sub="">hf>(T)	<Γ>(mm/s)	A ₂₅	%
Fe_3Sn_2 (a)	DIST	0.39553818	0.212423061	19.8584242	0.6	2.680403	69.76329
eMS	DOUB	0.283737105	1.10484316	-	0.71363211	-	9.992749
	SEXT	0.413563814	0.285084558	18.8771655	0.6	1.622843	20.24396
Fe₃Sn (b)	DIST	0.3	0.15	21.9428538	0.6	2.684257	91.49941
eMS	DOUB	0.283737105	1.10484316	-		-	8.50059
	SEXT	-	-	-	-	-	0
Fe ₃ Sn ₂ (c)	DIST	-0.188106369	0.143022715	25.1408391	0.60786706	3.150171	86.20511
CEMS	DOUB	0.120992088	0.474187244	-	0.71363211	-	13.79489
	SEXT	-	-	-	-	-	0

Sample TMS1456 (Fe₃Sn₂)

SexGenS		DBL		DIST2				
						<i>B</i> (T)	f (relative)	
$B_{\rm hf}({\rm T})$	18.877165			$\delta_0 (\text{mm/s})$	-0.3955382	33	0	
δ (mm/s)	-0.4135638	δ (mm/s)	-0.2837371	$\delta_1 (\text{mm/s/T})$	0	27.560502	-1.9422947	
$\Delta E_{\rm Q} ({\rm mm/s})$	0.2850846	$\Delta E_{\rm Q} ({\rm mm/s})$	1.1048432	$\Delta E_{\rm Q,0} ({\rm mm/s})$	-0.2124231	21	-3.7762395	
		Γ (mm/s)	0.7136321	$\Delta E_{\rm Q,1}$ (mm/s/	0	5	0	
Outer/middle	e/inner							
Γ(mm/s)	Area ratio			$\Gamma_{16} (\text{mm/s})$	0.6			
0.6	3			$\Gamma_{25} \text{ (mm/s)}$	0.6			
0.6	1.6228433			$\Gamma_{34} \text{ (mm/s)}$	0.6			
0.6	1			A ₁₆	3			
				A ₂₅	2.6804029			
				A ₃₄	1			
				Nb	3			
					0		Chart Title	
					-0.5	5 10	15 20	25 30
					-1			
					-1.5			
					-2		\mathbf{X}	/
					-2.3			
				Average B	-3.5			
				19.858424	-4		¥	
				Standard dev	V.			
				5.7973243				
			0.0007463					
Area (%)	20.243965	Area (%)	9.9927486	Area (%)	69.763287			

Sample TMS1437 (Fe₃Sn)

SexGenS		DBL		DIST2				
						<i>B</i> (T)	f (relative)	
$B_{\rm hf}({\rm T})$	21.803795			$\delta_0 (\text{mm/s})$	-0.3	33	0	
δ (mm/s)	-0.6216704	δ (mm/s)	-0.2837371	$\delta_1 (\text{mm/s/T})$	0	27.560502	-3.1127925	
$\Delta E_{\rm Q} ({\rm mm/s})$	-0.2843864	$\Delta E_{\rm Q} ({\rm mm/s})$	1.1048432	$\Delta E_{\rm Q,0} ({\rm mm/s})$	0.15	21	-2.1231911	
		Γ (mm/s)	0.7136321	$\Delta E_{Q,1}$ (mm/s)	0	5	0	
Outer/middle	e/inner							
Γ(mm/s)	Area ratio			$\Gamma_{16} \text{ (mm/s)}$	0.6			
0.637776	3			$\Gamma_{25} \text{ (mm/s)}$	0.6			
0.8675067	4			Γ ₃₄ (mm/s)	0.6			
0.6	1			A ₁₆	3			
				A ₂₅	2.6842568			
				A ₃₄	1			
				Nb	3			
							Chart Title	
					0			
					-0.5	5 10	15 20	25 30
					-1			
					-1.5			
					-2			
					-2.5			
				21 9/285/	-3			
				Standard dou	-3.5			
				6 0573744	/•			
				0.0575744				

Article

Magnetic Structure and Strain State in Fe/V Superlattices Studied by ⁵⁷Fe⁺ Emission and Conversion Electron Mössbauer Spectroscopy

Torben E. Mølholt^{1,2}, Sveinn Ólafsson¹, Haraldur P. Gunnlaugsson¹, Bingcui Qi^{1,*}, Karl Johnston², Roberto Mantovan³, Hilary Masenda⁴, Krish Bharuth-Ram⁵, Hafliði P Gíslason¹, Guido Langouche⁶ and Deena Naidoo⁴

Pd layer	
V Monolayers (MLs)	
Fe Monolayers (MLs)	
$\left\{ \begin{array}{c} V MLs \\ Fe MLs \end{array} \right\} \times$ repetition	
MgO (100) (Substrate)	

Fe_{Fe} is not fully symmetr can be described with a coupling between δ and

 $\delta_{Fe_{Fe}} = \delta_{Fe_{Fe}} \left(33T \right) + \delta_1 \times$

(mm/s)

shift,

Our study demonstrate that with the online eMS technique the effects of the strain state the superlattice on the magnetic of properties of the Fe-layer in the Fe/V multilayer structures can be detected

Emission Mössbauer spectroscopy of topological kagome magnets						
CDS#	Proposal #	IS #	Setup	Shifts	Isotopes	
CERN-INTC-2024-004	INTC-P-687		GLM/GHM	11	57Mn,119In	
Beam intensity/purity, targets-ion sources	These isotopes were utiliz no issues are anticipated. <i>Technical info for future r</i> - <i>RILIS for 57Mn a</i> - <i>UCx Ta</i>	zed in numerous SSP runs reference: nd 119In -> only indicate	s previously, demonstrating d for 119In in the proposal	sufficient production yield but required for both.	ls for the experiment, so	
General implantation and setup						
General Comments						
Safety	ISIEC for this set-up at E inspection to be organised the installation. The template EDMS 2933 green light from safety st	DMS 2897524 (eMIL) - t l with EP Electrical Safet 8671 (procedure for the c andpoint.	to be Released. Additional s y Officer (5.5 kV) and spect ollection) and an IMPACT i	afety checks (i.e. cryogen ific Safety Clearance to be s to be filled, a dry run og	ics) and electrical e delivered before used of anised, in order to get	
TAC recommendation	The TAC does not see	any feasibility issues wit	h this proposal.			

Foreseen activity on samples

The general production term for activity in Bq is given by the formula:	
$A = N\sigma\varphi(1 - e^{-\lambda t})$	
Where N is the number of atoms,	
σ is the cross section and	
arphi the incident fluence of particles.	
The yield provided in the ISOLDE database is a simplified expression of	
Νσφ	
it provides the number of ions per charge unit of the primary proton beam.	
For example, 3E7 ions per μ C means 3E7 ions per second of 1 μ A of the primary proton beam.	Updated 119In yield is 3E7 ions per μ C
However, if we have full intensity of protons, i.e. 2 μA, we will have 6E7 ions per second.	
When the half-life is short, we reach saturation quickly, meaning that the expression	
$e^{-\lambda t}$	
is close to zero.	
Then with short half-lives, the activity at saturation is equal to the production rate, in this case 6E7 Bq or 60 MBq.	

Ferromagnets

Slowly-relaxing paramagnets

Paramagnetic Fe³⁺ in axially stymmetric crystal field splits into the 3 Kramers doublets $S_7 = \pm 1/2, \pm 3/2, \pm 5/2$

Topological Magnetic Weyl and massive Dirac systems: the Kagome (anti)ferromagnets

J.-X. Yin, B. Lian & M.Z. Hasan, Nature 612, 657 (2022).

Illustration of a pair of Weyl fermion quasiparticles with opposite chiral charges (red and blue spheres) in the 3D momentum space. The arrows illustrate the direction of the Berry curvature field in the vicinity of each Weyl fermion. The red and blue cones illustrate their respective linear Weyl dispersions in the bulk momentum space. On the top surface, a Fermi arc state (yellow arc) connects two Weyl cones in the surface momentum space. b, Illustration of Weyl Fermion positions and Fermi arc connectivity in the surface momentum space of the kagome non-collinear antiferromagnet Mn₃Sn (top) and a kagome Ferromagnet, e.g. Fe₃Sn (bottom). Owing to the rotation-symmetry breaking of the non-colinear antiferromagnetism and spin-orbit coupling, the Weyl

Fermion distribution and Fermi arc connectivity also break rotational symmetry.

Ferromagnetic Kagome Fe₃Sn₂ hosts massive Dirac fermions

The kagome structure and Fe₃Sn₂. a, b, Structure of the kagome lattice (a) and the associated Dirac point in the nearest-neighbour tight-binding model (b), with the Brillouin zone shown in the inset. The band is degenerate, as denoted with red and blue spins. c, d, Ferromagnetic kagome lattice with broken time-reversal symmetry (moments in blue) (c) and the associated spin-polarized Dirac band with coupling between the magnetization and spin (d). e, f, Spin-orbit-coupled ferromagnetic kagome lattice with Berry phase φ accrued via hopping (e) and the corresponding gapped Dirac spectrum (f). g, The Fe₃Sn kagome plane in Fe_3Sn_2 , with the kagome network shown in red. h, Transmission electron microscopy cross-section of Fe₃Sn₂ and the corresponding Fe₃Sn and stanene layers viewed from the [1010] direction.

Anomalous Hall effect in Fe₃Sn₂

L. Ye et al., Nature 555, 638 (2018)

Large anomalous Nernst effect in the kagome ferromagnet Fe₃Sn

Crystal structure, anomalous Nernst module, ANE, and temperature dependence of ANE of Fe_3Sn .

(A) Top view of the kagome lattice of Fe₃Sn with Fe (red) and Sn (gray) atoms, respectively. (B) Schematic picture of thermopiles using ANE. (C) Nernst coefficient $-S_{ji}$ as a function of magnetic field in polycrystalline Fe₃Sn after the correction of demagnetization effect, reaching up to 2.9 μ V K⁻¹ at 1 T, 300 K. (D) Temperature dependence of the Nernst signal at an external magnetic field of 2 T (red, left axis) and of the transverse thermoelectric conductivity.

Hexagonal antiferromagnets Mn_3Z (Z = Sn, Ge)

Zhang *et al.*, *Phys. Rev. B* **95**, 075128 (2017) Tomiyoshi, *Solid Sate Commun.* **42**, 385 (1982)

Magnetic Weyl fermions in Mn_3Sn , a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature.

[K. Kuroda et al., Nat. Mater. 16, 1090 (2017)]

Realization of epitaxial Mn₃Sn noncollinear antiferromagnet at MPI Dresden

Large anomalous Hall response from momentum-space Berry curvature in an AFM.

[J. Kübler and C. Felser 2014 *EPL* **108** 67001]

James M. Taylor, Anastasios Markou, Edouard Lesne et al., Phys. Rev. B 101, 094404