Nuclear and laser spectroscopy study of the neutron-rich ^{212,213}Bi isotopes with LIST

Andrei Andreyev

On behalf of York-Leuven-Bratislava-Bucharest... +IDS-RILIS-ISOLTRAP Collaboration

Contents

- Previous Bi studies by our collaboration (IS608, IS650)
- Outstanding questions and puzzles in the neutron-rich Bi isotopes

²¹⁴ **PO**

163.72 us 0⁺ M ⁻4470.0 (1.4)

²¹³ 83

>168 s 25/2-# Eex 1300# (200# 130

• Experimental method (LIST, IDS, MR-ToF)

²¹³ PO

- Rate estimations
- Beam-time request (10 shifts)

²¹² PO

²¹¹ Bi

128

128

294.7 ns 0 M ~10369.5 (1

α=1009

M [−]11859 (

INTC, 7th February 2024

²¹⁵ **PO**

²¹⁴ B

>93 s 8⁻# Eex 200# (100#)

ms 9/2

131

131

²¹⁶ **PO**

145 ms 0

M 1782.4 (1.8)

α=100%

Ri

215 83 132

132

²¹⁷ **PO**

1.514 s (9/2⁺ M 5884 (7)

²¹⁶ 83 133

133

²¹⁸ **PO** 134

3.098 m 0⁺

M 8356.9 (2.0)

a≈100%

β⁻=0.02#9

134

217 83 B ²¹⁹ PO

218 83

33 s (6-,7-,8-

135

135

²²⁰ PO

²¹⁹ B

8.7 s 9/2-#

40# s 0⁴

M 15263 (18)

²²¹ PO

220 83

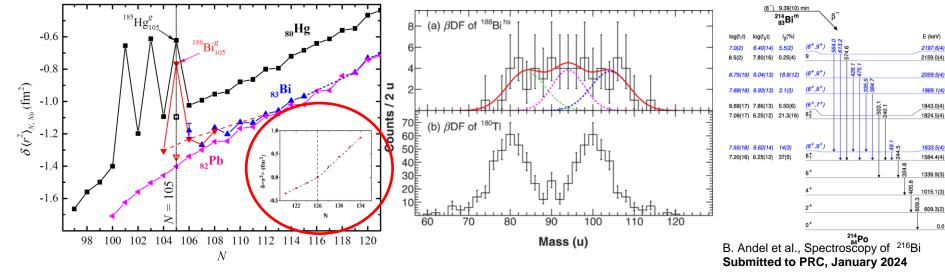
2.2 m 9/2*# M 19774 (20)

The Team (RILIS-IDS-ISOLTRAP Collaboration)

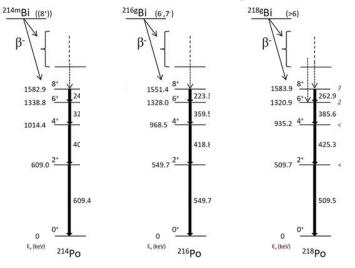
A.N. Andreyev¹, B. Andel², S. Antalic², S. Bara³, C. Bernerd^{3,4}, A. Candiello³, K.Chrysalidis⁴, T.E. Cocolios³, J. Cubiss¹, H. De Witte³, M. Deseyn³, R. de Groote³, V.N. Fedosseev⁴, K.T. Flanagan⁵, G. Georgiev⁶, M. Heines³, R. Heinke⁴, A.A.H. Jaradat^{4,5}, J.D. Johnson³, U. Koster⁷, R. Lica⁸, K. Lynch⁵, R. Mancheva^{3,4}, B.A. Marsh⁴, A. McGlone⁵, C. Mihai⁸, H. Naïdja⁹, G. Neyens³, C.Page¹, S. Rothe⁴, P. Van Duppen³, W. Wojtaczka³, Z.Yue¹, D. Balabanski¹⁰, A. Kusoglu¹⁰, G.Rainovski¹¹, K. Gladnishki¹¹, D. Kocheva¹¹, K. Stoychev⁶, Y. Hirayama¹², M. Mukai¹³, J. Reilly⁵, T. Niwase¹², Y. Watanabe¹², J.Wessolek⁵, A.Algora¹⁴, J.Jolie¹⁵, A.Blazhev¹⁵, N.Warr¹⁵, Z. Podolyak¹⁶, L.Gaffney¹⁷, A. Korgul¹⁸, A. Illana¹⁹, Y. Litvinov²⁰, L.Nies^{4,21}, P. Giesel²¹, Ch. Schweiger²², D. Lange²², A. Morales²³, B. Olaizola²⁴, J. Sanchez²⁴+IDS Collaboration +ISOLTRAP/MR-ToF Collaboration

¹University of York, U.K., ²Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, Slovakia, ³IKS-KULeuven, Belgium, ⁴CERN-ISOLDE, Switzerland, ⁵University of Manchester, UK, ⁶IJCLab/IN2P3/CNRS, Orsay, France, ILL, ⁷Grenoble, France, ⁸IFIN-HH, Romania, ⁹Université Constantine 1, Algeria, ¹⁰ELI-NP, Bucharest, Romania, ¹¹Sophia University, Bulgaria, ¹²WNSC, IPNS, KEK, Japan, ¹³RIKEN, Japan, ¹⁴University of Valencia, Spain, ¹⁵IKP, University of Cologne, Germany, ¹⁶University of Surrey, UK, ¹⁷University of Liverpool, UK, ¹⁸Warsaw University, Poland, ¹⁹Universidad Complutens de Madrid, Madrid, Spain, ²⁰GSI (Germany), ²¹Universität Greifswald, Germany, ²²Max-Planck-Institut für Kernphysik, Heidelberg, Germany, ²³IFIC, CSIC-University of Valencia, Spain, ²⁴IEM-CSIC, Madrid, Spain.

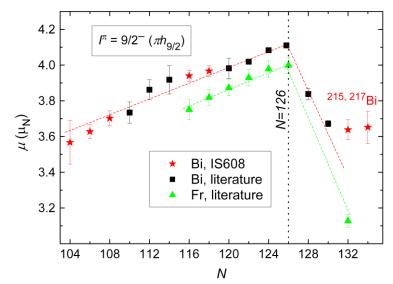
Spokesperson: A.N. Andreyev (York) Co-spokesperson: T.E Cocolios (KU Leuven) Local Contact Person: R. Heinke (CERN)


The CRIS team will provide and set-up the "injection-seeded" laser to obtain the "narrow-band" mode.

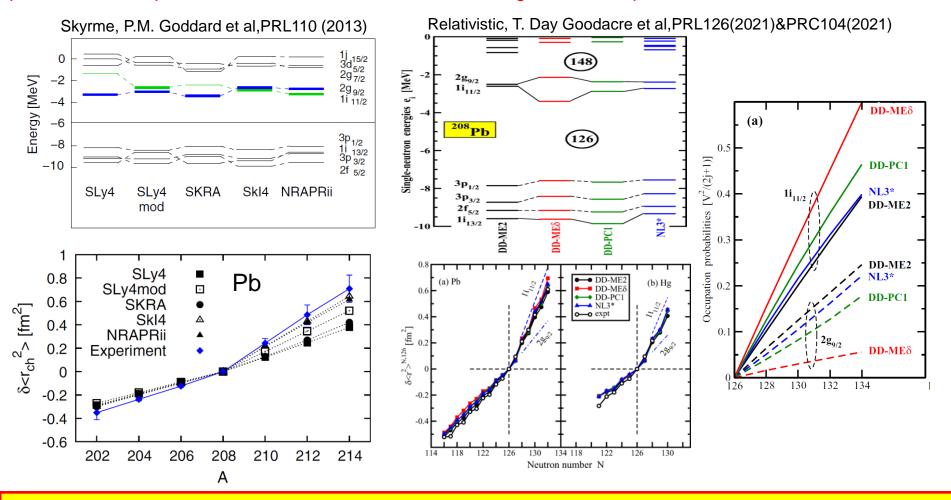
Selected latest results on Bi isotopes (IS608+IS650)


IS608 A.E. Barzakh et al., Shape staggering in gs of $^{187\text{-}189}\text{Bi}$ Phys. Rev. Lett. 127, 192501 (2021)

IS608 B. Andel et al., ¹⁸⁸Bi beta-delayed fission Phys. Rev. C 102, 014319 (2020)

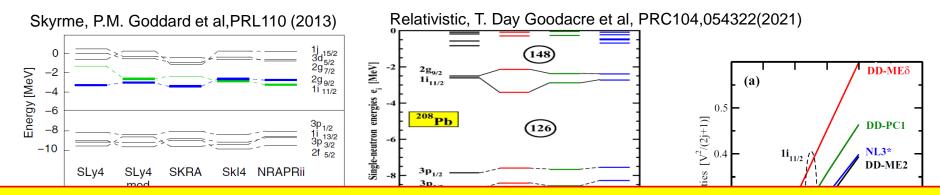

IS650 B. Andel et al., New isomer in ²¹⁴Bi Phys. Rev. C 104, 054301 (2021)

IS650, fast timing, 8⁺ isomers; R.Lica in preparation Provided rate measurements up to ²¹⁸Bi



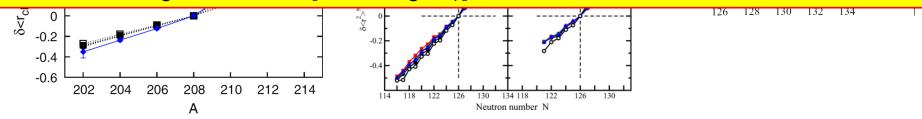
IS608, Anomaly of the gs 9/2⁻ magnetic moments in ^{215,217}Bi In preparation

Goal: High-spin isomers ^{212m1,m2,213m}Bi and the N=126 kink problem


Properties of the high-spin isomers ^{212m1,m2,213m}Bi and their link to the Bi gs charge radii kink at N=126: is the position and occupation of the i11/2 neutron orbital relative to g9/2 a real culprit for the N=126 kink?

It seems the models in which the i11/2 neutron orbital is below g9/2 (or very close to it) reproduce the kink better, due to enhanced population of the i11/2 orbital. In particular, this is a common property of relativistic approaches.

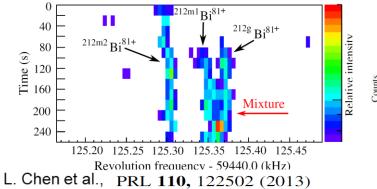
Goal: High-spin isomers ^{212m1,m2,213m}Bi and the N=126 kink problem

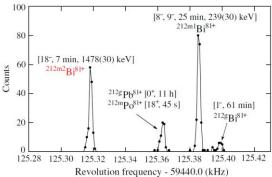

Properties of the high-spin isomers ^{212m1,m2,213m}Bi and their link to the kink in Bi gs charge radii at N=126: is the position and occupation of the i11/2 neutron orbital a real culprit for the N=126 kink?

This effect can be probed by charge radii of high-spin isomers in ^{212m2,213m}Bi, whose configuration **presumably includes an i11/2 neutron**:

^{212m2}Bi [πh9/2×((vg9/2)²×vi11/2)]18⁻, ^{213m}Bi [πh9/2× (vg9/2×vi11/2)]25/2⁻,

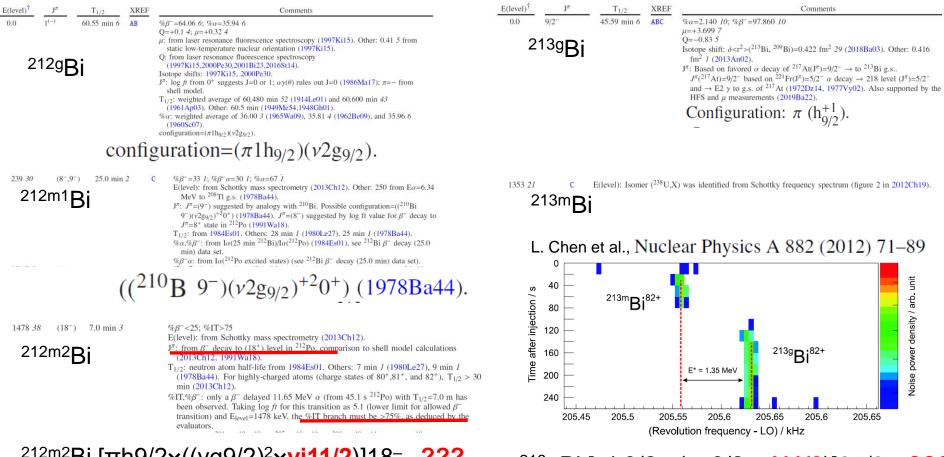
relative to their gs's or ^{212m1}Bi [πh9/2×vg9/2)]8⁻,9⁻, which have no i11/2 neutrons.


It seems the models in which the i11/2 neutron orbital is below g9/2 (or very close to it) reproduce the kink better, due to enhanced population of the i11/2 orbital. This is a common property of relativistic approaches.


^{212g,m1,m2}Bi (N=129)

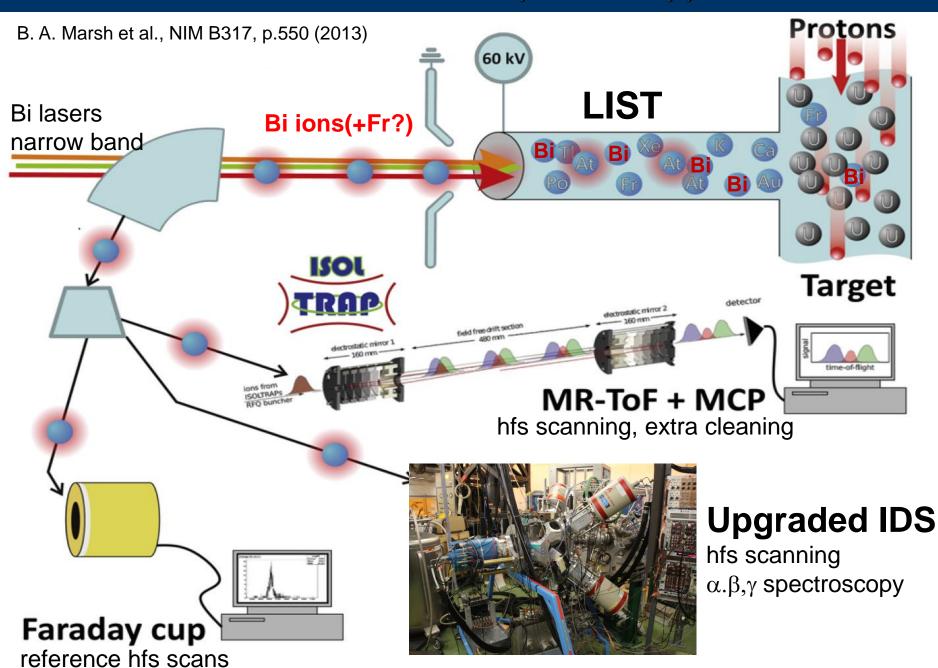
^{213g,m}Bi (N=130)

$E(level)^{\dagger}$ J^{π} $T_{1/2}$ λ	REF Comments	$E(\text{level})^{\dagger}$ J ^{π} T _{1/2} XREF Comments
0.0 1 ⁽⁻⁾ 60.55 min 6 A	B %β ⁻ =64.06 6; %α=35.94 6 Q=+0.1 4; µ=+0.32 4 µ: from laser resonance fluorescence spectroscopy (1997Ki15). Other: 0.41 5 from static low-temperature nuclear orientation (1997Ki15). Q: from laser resonance fluorescence spectroscopy (1997Ki15,2000Pe30,2001Bi23.2016St14). Isotope shifts: 1997Ki15, 2000Pe30. J ⁵ : log <i>f</i> from 0 ⁺ suggests J=0 or 1; αγ/θ) rules out J=0 (1986Ma17); π=- from shell model. T _{1/2} : weighted average of 60.480 min 52 (1914Le01) and 60.600 min 43 (1961Ap03). Other: 60.5 min (1949Me54.1948Gh01). %c: weighted average of 36.00 3 (1965Wa09), 35.81 4 (1962Be09), and 35.96 6 (1960Sc07). configuration=(π1h _{9/2})(v2g _{9/2}).	0.0 9/2 ⁻ 45.59 min 6 ABC % $a=2.140$ 10; % $\beta^{-}=97.860$ 10 $\mu=+3.699$ 7 Q=-0.83 5 Isotope shift: $\delta < r^{2} > (^{213}\text{Bi}, ^{209}\text{Bi})=0.422 \text{ fm}^{2}$ 29 (2018Ba03). Other: 0.416 fm ² 1 (2013An02). J [#] ; Based on favored α decay of $^{217}\text{At}(J^{\pi})=9/2^{-} \rightarrow \text{to} ^{213}\text{Bi g.s.}$. $J^{\pi}(^{217}\text{At})=9/2^{-}$ based on $^{221}\text{Fr}(J^{\pi})=5/2^{-} \alpha$ decay $\rightarrow 218$ level (J [#])=5/2 ⁻ and $\rightarrow E2 \gamma$ to g.s. of ^{217}At (1972Dz14, 1977Vy02). Also supported by the HFS and μ measurements (2019Ba22). Configuration: π (h ⁺¹).
con	figuration= $(\pi 1h_{9/2})(\nu 2g_{9/2})$.	
239.30 (8 ⁻ ,9 ⁻) 25.0 min 2 212m1Bj	 C %β²=33 <i>I</i>; %β²α=30 <i>I</i>; %α=67 <i>I</i> E(level): from Schottky mass spectrometry (2013Ch12). Other: 250 from Eα=6.34 MeV to ²⁰⁸TI g.s. (1978Ba44). J^π: J^π=(9⁻) suggested by analogy with ²¹⁰Bi. Possible configuration=((²¹⁰Bi 9⁻)(v2g₉2)^{v2}0⁺) (1978Ba44). J^π=(8⁻) suggested by log ft value for β⁻ decay to J^π=8⁺ state in ²¹²Po (1991Wa18). T_{1/2}: from 1984Es01. Others: 28 min <i>I</i> (1980Le27), 25 min <i>I</i> (1978Ba44). %α,%β²: from Iα(25 min ²¹²Bi)/Iα(²¹²Po) (1984Es01), see ²¹²Bi β⁻ decay (25.0 min) data set. %β² α: from Iα(²¹²Po excited states) (see ²¹²Bi β⁻ decay (25.0 min) data set). 	 1353 21 C E(level): Isomer (²³⁸U,X) was identified from Schottky frequency spectrum (figure 2 in 2012Ch19). 213mBi L. Chen et al., Nuclear Physics A 882 (2012) 71–89
(((1478.38 (18 ⁻) 7.0 min 3 212m2Bi	210 B 9 ⁻) $(\nu 2g_{9/2})^{+2}0^+)$ (1978Ba44). % $\beta^- < 25$; %IT>75 E(level): from Schottky mass spectrometry (2013Ch12). J [#] : from β^- decay to (18 ⁺) level in ²¹² Po, comparison to shell model calculations (2013Ch12, 1991Wa18). T _{1/2} : neutron atom half-life from 1984Es01. Others: 7 min <i>I</i> (1980Le27), 9 min <i>I</i> (1978Ba44). For highly-charged atoms (charge states of 80 ⁺ , 81 ⁺ , and 82 ⁺), T _{1/2} > 30 min (2013Ch12). %IT,% β^- : only a β^- delayed 11.65 MeV α (from 45.1 s ²¹² Po) with T _{1/2} =7.0 m has been observed. Taking log <i>fi</i> for this transition as 5.1 (lower limit for allowed β^- transition) and E _{level} =1478 keV, the %IT branch must be >75%, as deduced by the evaluators.	$ \begin{array}{c} & 40 \\ & 80 \\ & 120 \\ & 120 \\ & 200 \\ & 240 \\ & 205.45 \\ & 205.5 \\ & 205.5 \\ & 205.5 \\ & 205.6 \\ &$
^{212m2} Bi [πh	9/2×((vg9/2) ² ×vi11/2)]18 ⁻ ???	
L		213m Bi [π h9/2x (va9/2xvi11/2)]25/2 ⁻ ???


^{213m}Bi [πh9/2x (vg9/2xvi11/2)]25/2⁻ ???

^{212g,m1,m2}Bi (N=129)

^{213g,m}Bi (N=130)

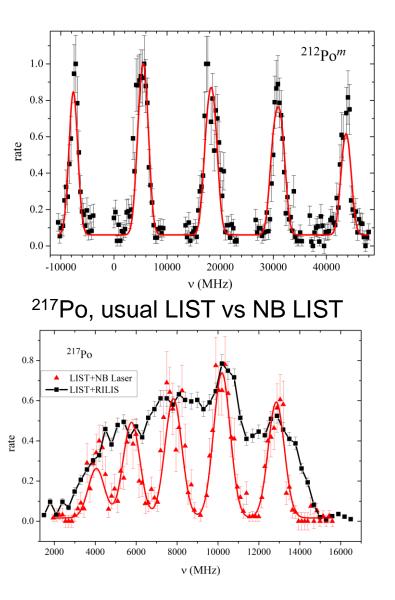

^{212m2}Bi [πh9/2×((vg9/2)²×vi11/2)]18⁻ ???

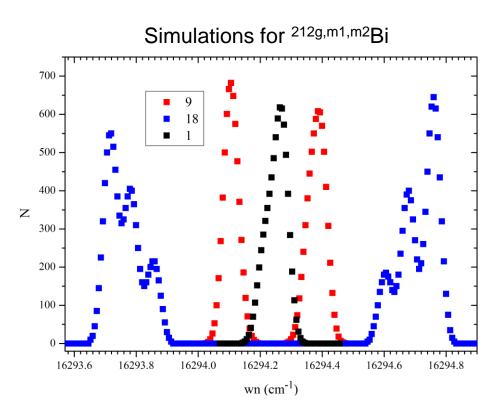
^{213m}Bi [πh9/2× (vg9/2×vi11/2)]25/2⁻ ???

Task 1: We will perform hfs scanning for ^{212m2,213m}Bi with LIST in narrowband mode (procedure confirmed for Po/Ac's in our 2022 campaigns). Some scanning can be done with MR-ToF (for longest-lived cases, if IDS is not enough). Deduced magnetic moments will help to confirm/establish the configurations. Also radii will be determined.

Task 2: Decay properties of high-spin isomers are poorly known, some studied 40-50 years ago. We can now do it much better with the versatile IDS system, e.g. to search for the IT decay from 18⁻ to 8/9⁻ (or even to the gs) in ^{212m2}Bi, and/or to measure for the 1st time the half-life and decay path of ^{213m}Bi.

The Method: In-source laser spectroscopy+IDS+MR-ToF


Why LIST? -Fr contamination


- Long-lived, strongly-produced Fr contaminants only at A=212,213
- The LIST operation in this region is now confirmed by several experiments, e.g. our recent ²⁰⁷⁻²⁰⁹TI study (Z. Yue et al., PLB 849,138452, February 2024)

		N=126													
²¹³ Ac	²¹⁴ Ac	²¹⁵ Ac 170 ms	²¹⁶ Ac 330 μs	²¹⁷ AC 69 ns	²¹⁸ Ac 1.1 μs	²¹⁹ Ac	²²⁰ Ac	²²¹ Ac	²²² Ac	²²³ Ac	²²⁴ Ac	²²⁵ Ac	²²⁶ Ac	²²⁷ Ac	
²¹² Ra	²¹³ Ra	²¹⁴ Ra	²¹⁵ Ra 1.6 ms	²¹⁶ Ra 180 ns	²¹⁷ Ra 1.6 μs	²¹⁸ Ra 26 μs	²¹⁹ Ra	²²⁰ Ra	²²¹ Ra	²²² Ra	²²³ Ra	²²⁴ Ra	²²⁵ Ra	²²⁶ Ra	
²¹¹ Fr	212 Fr 20 m	²¹³ Fr ^{24 s}	²¹⁴ Fr ^{5 ms}	²¹⁵ Fr 86 ns	²¹⁶ Fr 700 ns		²¹⁸ Fr 1 ms	²¹⁹ Fr ^{20 ms}	²²⁰ Fr ^{27 s}	²²¹ Fr	²²² Fr	²²³ Fr	²²⁴ Fr	²²⁵ Fr	
²¹⁰ Rn	²¹¹ Rn	²¹² Rn		²¹⁴ Rn	²¹⁵ Rn 2.3 μs	²¹⁶ Rn 45 μs	²¹⁷ Rn ^{0.54 ms}	²¹⁸ Rn 35 ms	²¹⁹ Rn	²²⁰ Rn	²²¹ Rn	²²² Rn	²²³ Rn	²²⁴ Rn	
²⁰⁹ At	²¹⁰ At	²¹¹ At	²¹² At	213At	²¹⁴ At	²¹⁵ At 0.1 ms	²¹⁶ At 300 μs		²¹⁸ At 1.6 s	²¹⁹ At	²²⁰ At	²²¹ At	²²² At	²²³ At	
²⁰⁸ Po	²⁰⁹ Po	²¹⁰ Po	²¹¹ Po	212R0	213P.0	²¹⁴ Po	²¹⁵ Po 1.7 ms	²¹⁶ Po 150 ms	²¹⁷ Po 1.5 s	²¹⁸ Po 3.1 m	²¹⁹ Ρο α, 10 m	220 α, mih			
²⁰⁷ Bi	²⁰⁸ Bi	²⁰⁹ Bi	²¹⁰ Bi	²¹¹ Bi	212 <mark>Bi</mark> 7,22, <mark>6</mark> 5 m	²¹³ Bi 45 m	²¹⁴ Bi ^{19.9 m}	²¹⁵ Bi 7.7 m	²¹⁶ Bi 2.2 m	²¹⁷ Bi 1.6 m	²¹⁸ Bi 33 s	²¹⁹ Bi ~10 s	²²⁰ Bi ~10 s	Bi, 2	Z=83
²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	²⁰⁹ Pb	²¹⁰ Pb	²¹¹ Pb	²¹² Pb	²¹³ Pb	²¹⁴ Pb	²¹⁵ Pb					_	
²⁰⁵ TI	²⁰⁶ TI	²⁰⁷ TI	²⁰⁸ TI	²⁰⁹ TI	²¹⁰ TI	²¹¹ TI	²¹² TI			-					

Examples of narrow-band scanning for ^{212m,217}Po (April 2022) and simulations for ^{212g,m1,m2}Bi

CRIS "injection-seeded" narrowband laser (April 2022)

Long scans, ~200 laser steps are needed

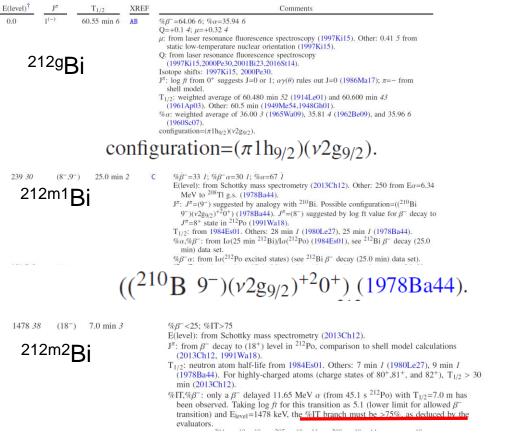
Beam request

Table 1. Measured (red, IS608/IS650) and calculated (black) yields and the shifts request for Bi nuclei based on the 2 μ A proton beam intensity, see text for details. The number of shifts account for half-lives, measurement procedure and respective yields.

			LIST yield,	Shifts
Nuclide	$T_{1/2}, s$	RILIS yield, ions/µC	ions/µC	
$212m2, I^{\pi} = (18^{-})$	420	6.1E+03	3.1E+02	4 ^{a b}
$212m1, I^{\pi} = (8^{-}, 9^{-})$	1500	5.5E+03	2.8 E+02	
213m, $I^{\pi} = (25/2^{-})$	>168	8.2E+02	4.1E+01	3 ^{a b}
216	135	1.0E+03 (IS650)	5.0E+01	
216m	396	1.5E+03 (IS608) ^c	7.5E+01	
209		Multiple 0.5 h scans		1
Reference Faraday Cup scans		over the whole run		1
LIST optimization with the proton beam				1
on target				1
Stable beam tuning to IDS/MR-ToF				1

^aScans of both isomers will be done simultaneously and require in total approximately 3 shifts; this also includes time needed for the search of unknown gamma lines and determination of the scanning range. Very broad hfs scanning with many steps will be required, by analogy with ²¹²Po, measured in 2022 (see simulated hfs in Fig. 3).

^b1 shift will be used for decay spectroscopy.


^cIsomer ratio was determined during IS608 campaign from the ratio of the MR-ToF hfs maxima

In total, 10 shifts requested for hfs/IS, nuclear spectroscopy and reference measurements for ^{212,213}Bi

If the proposal is accepted, it will also "save" 2 shifts for G.Georgiev's Lol239 requesting the same Bi isotopes for the g-factor measurements in daughter Po

^{212g,m1,m2}Bi (N=129)

 212m2 Bi [π h9/2×((vg9/2)²×vi11/2)]18⁻ ???

TABLE I. ²¹² Bi isomers studied in the ES
--

	$I_{ m calc}^{\pi}$	E_{calc}^{a} (keV)	$E_{\rm calc}^{\rm new}$ (keV)	E_{\exp}^{ESR} (keV)	E_{\exp}^{b} (keV)
m1	8-, 9-	303, 281	263, 241	239(30)	250(30)
m2	18^{-}	1496	1456	1478(30)	>1910

^aCalculated by Warburton [5].

^bLiterature excitation energies [4,9].

L. Chen et al., PRL 110, 122502 (2013)

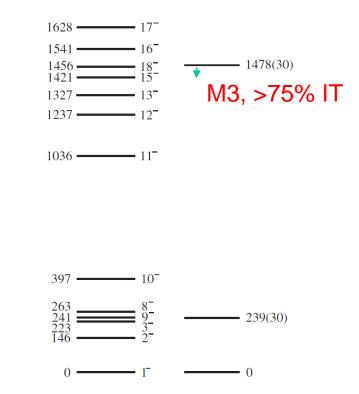
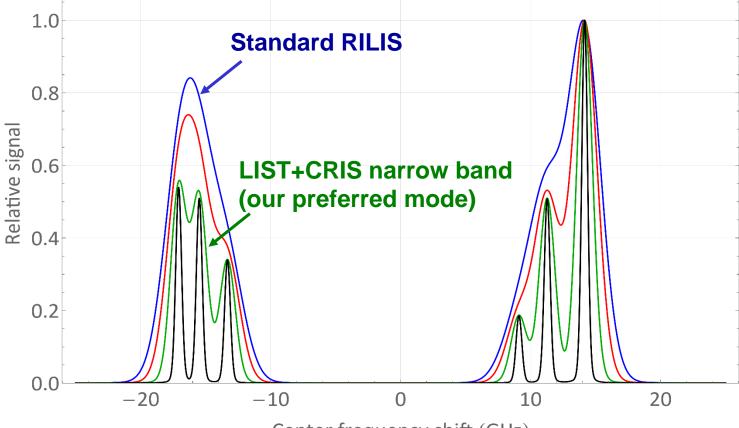



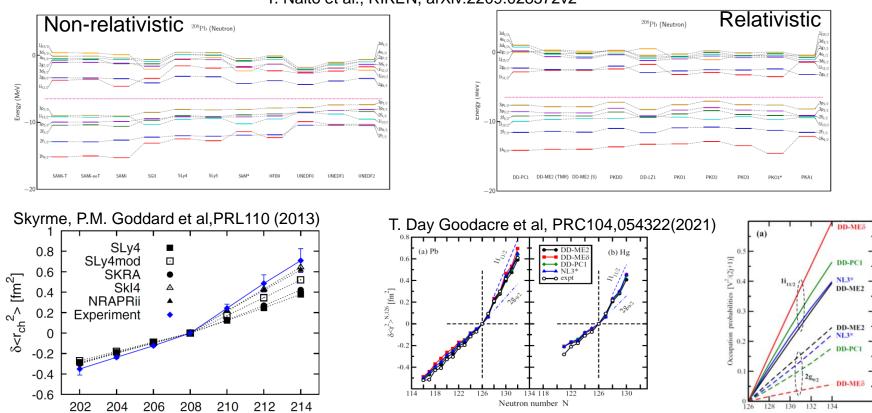
FIG. 3. Partial level scheme for 212 Bi, showing the calculated energies of the yrast states on the left, together with a few non-yrast states (8⁻, 16⁻, and 17⁻) that are discussed in the text. On the right are the observed isomers with their energies measured in the present work.

energies is given in Table I. The maximally aligned $\pi h_{9/2}$, $\nu i_{11/2}(g_{9/2})^2$ configuration for the 18⁻ state is calculated to have 98% purity.

Do we really need PI-LIST mode?

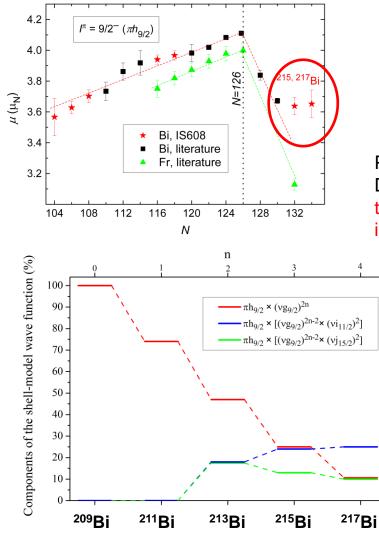
Simulations for ²⁰⁹Bi (R. Heinke)

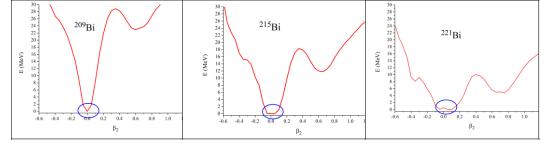
Center frequency shift (GHz)

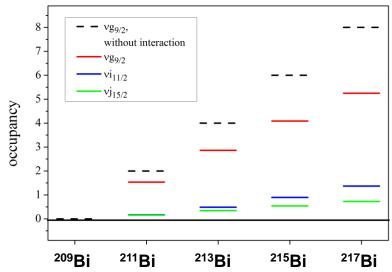

•Blue: Standard in-source spectroscopy + dual etalon laser (~2.9GHz)

•Red: LIST collinear mode + dual etalon laser (~2.2GHz) – The better resolution comes from the fact that the LIST only probes atoms flying towards the laser into the LIST. There will be a shift against the other modes.
 •Green: LIST collinear mode + CRIS narrowband laser (~1.4GHz) – our preferred mode of operation here
 •Black: PI-LIST mode + CRIS narrowband laser (~0.5GHz)

Conclusion: no significant improvement with PI-LIST, thus we might not use it at all (TAC asked on PI-LIST intensity reduction)


Physics Motivation and goals of the proposal Goal 1: The N=126 kink problem


Goal 1. Properties of the high-spin isomers ^{212m1,m2,213m}Bi and their possible link to the kink in Bi ground state charge radii at N=126: is the population of the i11/2 neutron orbital a real culprit for the N=126 kink? T. Naito et al., RIKEN, arXiv:2209.028572v2


It seems the models in which the i11/2 neutron orbital is below g9/2 (or very close to it) reproduce the kink better, due to enhanced population of the former orbital. If so, this effect can be probed by charge radii of high-spin isomers in 212,213 Bi, whose configuration does include an i11/2 neutron: 212m2 Bi [π h9/2×((vg9/2)²×vi11/2)]18–, 213m Bi [π h9/2× (vg9/2×vi11/2)]25/2–, relative to their gs's or 212m1 Bi, with less or no i11/2 neutrons (e.g. 212m1 Bi [π h9/2×vg9/2)]8–,9–).

Anomalous 9/2- gs magnetic moment systematics in ^{215,217}Bi: evidence for deformation/configuration mixing?

PES for ^{209,215,221}Bi calculated in HFB approach with Gogny forces D1S. A clear change of the PES minimum can be noticed by moving to heavier isotopes – deformation effects due to configuration mixing in the gs, via occupation of the high-j neutron orbitals?

The neutron shells occupancies for the 9/2⁻ gs of the even-N Bi isotopes. Black dashed lines correspond to artificial situation with sequential g9/2 shell filling, while red/blue/green lines correspond to the inclusion of the effective interaction. (H. Naïdja)

The shell-model wave function components for the 9/2⁻ gs of the even-N Bi isotopes. Only components with the weight larger than 10% are shown (H. Naïdja)