A study of seniority-2 configurations in N = 126and 124 isotonic chains

<u>G. Rainovski¹, G. Georgiev²</u>, D. Kocheva¹, K. Gladnishki¹, M. Djongololov¹, K.
Stoychev², N. Pietralla³, Th. Kröll³, V. Werner³, R. Zidarova³, T. Stetz³, H. Mayr³, A.
Blazhev⁴, J. Jolie⁴, C. Fransen⁴, A. Esmaylzadeh⁴, N. Warr⁴, P. Reiter⁴, M. Droste⁴,
H. Hess⁴, A.E. Stuchbery⁵, A.J. Mitchell⁵, G. Lane⁵, T. Kibedi⁵, B. Coombes⁵, Zs.
Podolyák⁶, M. Scheck⁷, D.L. Balabanski⁸, T. Grahn⁹, J. Pakarinen⁹, G. De
Gregorio^{10,11}, A. Gargano¹¹, T. Otsuka¹², B. Alex Brown¹³

 ¹ Faculty of Physics, Sofia University St. Kliment Ohridski, Bulgaria; ² IJCLab, Orsay, France, ³ IKP, TU Darmstadt, Darmstadt, Germany; ⁴ IKP, Universität zu Köln, 50937 Köln, Germany; ⁵ Department of Nuclear Physics, The Australian National University, Canberra, Australia; ⁶ University of Surrey, Guildford, UK; ⁷ University of the West of Scotland, Paisley, UK; ⁸ ELI-NP, IFIN, Bucharest, Romania; ⁹ University of Jyvaskyla, Finland; ¹⁰ Dipartimento di Matematica e Fisica, Universita degli Studi della Campania "Luigi Vanvitelli", Italy; ¹¹ INFN Sezione di Napoli, Napoli, Italy; ¹² Department of Physics, The University of Tokyo, Tokyo, Japan; ¹³ Michigan State University, East Lansing, Michigan USA

Physics case

Low-energy excited states of even-even semi-magic nuclei, with more than two-particles in a single high-*j* shell, originate from angular momenta recoupling of unpaired nucleons and can be classified in multipletes that have one and the same number of unpaired nucleons - **seniority** v

- The yrast states have seniority v = 2 and follow an energy pattern that is equivalent to the one for a j^2 configuration in which the energy spacing between the states decreases towards the state with maximum angular momentum.

- The absolute *E*² transition strengths for the seniority-conserving transitions $J \rightarrow J-2$ (J > 4) decrease in a parabolic way with the filling of the *j*-shell and reaches a minimum at the middle of the *j*-shell.

- The absolute *E*2 transition strength for the seniority-changing transition $2^+_1(v=2) \rightarrow 0^+_1(v=0)$ increases in a parabolic way with the filling of the *j*-shell and reaches a maximum at the middle of the j-shell.

The features of the seniority scheme persist in open shell nuclei close to magic numbers in which low-energy excitations are dominated by one kind of nucleons.

$N = 126 (^{210}Po - ^{212}Rn - ^{214}Ra)$

Shell model: KHMY3, $Oh_{9/2}$, $1f_{7/2}$, $Oi_{13/2}$, $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$ for both protons and neutrons, KSHELL

$N = 124 (^{208}Po - ^{210}Rn - ^{212}Ra)$

Shell model: KHMY3, $Oh_{9/2}$, $1f_{7/2}$, $Oi_{13/2}$, $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$ for both protons and neutrons, KSHELL

Can we make any conclusions on the nature of yrast states in these nuclei or on the quality of the shell model calculations? NO!

- The 6⁺ and the 8⁺ behave like seniority excitations.
- The calculated B(E2;4⁺₁ → 2⁺₁) decreases from ²⁰⁸Po to ²¹⁰Rn (seniority) but then dramatically increases in ²¹²Ra (?).
- The calculated B(E2;2⁺₁ → 0⁺₁)s increase but no quantitative comparison to experimental data is possible.

The experimental $B(E2;2^+_1 \rightarrow 0^+_1)$ values in ²¹⁰Rn and ²¹²Ra need to be precisely measured and reliable upper limits for the $B(E2;4^+_1 \rightarrow 2^+_1)$ needs to be determined.

RIB production from ISOLDE and experimental details

<u>TACs comments</u>: reduce the total transmission efficiency from 5% to 2.8% and reduced the proton current from 2 uA to $1.5 \text{ uA} \Rightarrow \text{a}$ factor of 2 - 3 reduction of the beam intensity at Miniball

214Ra & 212Ra experiment: ThCx target

- 214 Ra(13 s) (214 Fr (5 ms) suppressed) $\sim 3.8 \text{ p/}{\mu}\text{C} + \text{RILIS ionization scheme} \Rightarrow 2 \times 10^4 \text{ pps at } 4.5 \text{ MeV/u at Miniball.}$
- ²¹²Ra (24 m) (²¹²Fr(20 m)) ~3.8 p/μC + extract ²¹²RaF ⇒ 10⁴ pps at 4.5 MeV/u at Miniball.

<u>TACs comments:</u> the beams are possible, switching from ²¹⁴Ra to ²¹²Ra is possible (1 shift).

Experimental set-up – Miniball + DSSD

- Target 2 mg/cm² ¹²⁰Sn.
- Reaction safe Coulomb excitation.
- Beam energy 4.5 MeV/u.
- DSSD at 20 mm behind the target ⇒ useful angular coverage 27° 62°.

²¹²Rn & ²¹⁰Rn experiment: UCx or ThCx target + cold plasma ion source VD7

<u>TACs comments</u>: the beams have been delivered to Miniball before with intensitity of $10^7 - 10^6$ pps \Rightarrow we have assumed 5×10⁵ pps at 4.5 MeV/u.

Count rate estimates

²¹⁴ Ra case: physics goal – measure the $B(E2; 2^+ \rightarrow 0^+)$ value	e			
Beam intensity – 2×10^4 pps		γs/shift	γs/2day	
$E_{\gamma}(2^+ \to 0^+) = 1382 \text{ keV}$		35	210 (7%)	
$B(E2; 2^+ \rightarrow 0^+) = 308 \text{ e}^2 \text{fm}^4$ (a half of the SM value)				
<u>²¹²Ra case:</u> physics goal – measure the $B(E2; 2^+ \rightarrow 0^+)$ value	e and estim	ate (<i>B</i> (<i>E</i> 2) < X)	the <i>B</i> (<i>E</i> 2; 4⁺ →	→ 2+)
Beam intensity – 10 ⁴ pps				-
$E_{\rm c}(2^+ \to 0^+) = 629 \text{ keV}$		γs/shift	γs/day	γs/3 days
$B(E2; 2^+ \rightarrow 0^+) = 422 \text{ e}^2 \text{fm}^4$ (a half of the SM value)	$2^{\scriptscriptstyle +} ightarrow 0^{\scriptscriptstyle +}$	235	705 (4%)	2115(2%)
$E_{\gamma}(4^+ \rightarrow 0^+) = 825 \text{ keV}$ B(E2: $A^+ \rightarrow 2^+) = 485 \text{ e}^2 \text{fm}^4$ (a half of the SM value)	$4^+ ightarrow 2^+$	4	12(30%)	36(17%)

IS506/2018/Andrés Illana Sison

<u>²¹⁰Rn case:</u> physics goal – measure the $B(E2; 2^+ \rightarrow 0^+)$ value a	and estimate (<i>l</i>	B(<i>E</i> 2) < X) the	$B(E2; 4^+ \rightarrow 2^+)$.)
Beam intensity – 5×10^5 pps		γs/shift	γs/day	γs/4 days
$E_{\gamma}(2^+ \rightarrow 0^+) = 644 \text{ keV}$ B(E2: 2 ⁺ $\rightarrow 0^+$) = 520 e ² fm ⁴ (lower experimental limit)	$2^+ \rightarrow 0^+$	15120(0.8%)		
$E_{\gamma}(4^+ \to 0^+) = 818 \text{ keV}$	$4^+ \rightarrow 2^+$	3	9	36(17%)
$\dot{B}(E2; 4^+ \rightarrow 2^+) = 5 \text{ e}^2 \text{fm}^4 (\text{the SM value})$	Beam intensity 1.6×10 ⁵ pps			12

Beam-time request

Run 1 (214Ra & 212Ra)

- 1 shift for tunning ²¹⁴Ra beam (RILIS).
- 6 shifts for data taking, ²¹⁴Ra.
- 1 shift for switching to ²¹²RaF (TAC).
- 1 shift for tunning ²¹²Ra.
- 9 shifts for data taking, ²¹²Ra.

In total: 18 shifts

Run 2 (²¹⁰Rn)

- 1 shift for tunning ²¹⁰Rn.
- 12 shifts for data taking, ²¹⁰Rn.

In total: 13 shifts