A study of seniority- 2 configurations in $N=126$ and 124 isotonic chains

G. Rainovski ${ }^{1}$, G. Georgiev ${ }^{2}$, D. Kocheva ${ }^{1}$, K. Gladnishki¹, M. Djongololov ${ }^{1}$, K. Stoychev², N. Pietralla 3, Th. Kröll${ }^{3}$, V. Werner ${ }^{3}$, R. Zidarova ${ }^{3}$, T. Stetz ${ }^{3}$, H. Mayr ${ }^{3}$, A. Blazhev 4, J. Jolie ${ }^{4}$, C. Fransen ${ }^{4}$, A. Esmaylzadeh ${ }^{4}$, N. Warr ${ }^{4}$, P. Reiter ${ }^{4}$, M. Droste ${ }^{4}$, H. Hess ${ }^{4}$, A.E. Stuchbery ${ }^{5}$, A.J. Mitchell ${ }^{5}$, G. Lane ${ }^{5}$, T. Kibedi ${ }^{5}$, B. Coombes ${ }^{5}$, Zs. Podolyák ${ }^{6}$, M. Scheck ${ }^{7}$, D.L. Balabanski${ }^{8}$, T. Grahn ${ }^{9}$, J. Pakarinen ${ }^{9}$, G. De Gregorio ${ }^{10,11}$, A. Gargano ${ }^{11}$, T. Otsuka ${ }^{12}$, B. Alex Brown ${ }^{13}$

${ }^{1}$ Faculty of Physics, Sofia University St. Kliment Ohridski, Bulgaria; ${ }^{2}$ IJCLab, Orsay, France, ${ }^{3}$ IKP, TU Darmstadt, Darmstadt, Germany; ${ }^{4}$ IKP, Universität zu Köln, 50937 Köln, Germany; ${ }^{5}$ Department of Nuclear Physics, The Australian National University, Canberra, Australia; ${ }^{6}$ University of Surrey, Guildford, UK; ${ }^{7}$ University of the West of Scotland, Paisley, UK; ${ }^{8}$ ELI-NP, IFIN, Bucharest, Romania; ${ }^{9}$ University of Jyvaskyla, Finland; ${ }^{10}$ Dipartimento di Matematica e Fisica, Universita degli Studi della Campania "Luigi Vanvitelli", Italy; ${ }^{11}$ INFN Sezione di Napoli, Napoli, Italy; ${ }^{12}$ Department of Physics, The University of Tokyo, Tokyo, Japan; ${ }^{13}$ Michigan State University, East Lansing, Michigan USA

Physics case

Low-energy excited states of even-even semi-magic nuclei, with more than two-particles in a single high-j shell, originate from angular momenta recoupling of unpaired nucleons and can be classified in multipletes that have one and the same number of unpaired nucleons - seniority v

- The yrast states have seniority $v=2$ and follow an energy pattern that is equivalent to the one for a j^{2} configuration in which the energy spacing between the states decreases towards the state with maximum angular momentum.
- The absolute E2 transition strengths for the seniority-conserving transitions $J \rightarrow J-2(J>4)$ decrease in a parabolic way with the filling of the j shell and reaches a minimum at the middle of the j shell.
- The absolute E2 transition strength for the seniority-changing transition $2^{+}{ }_{1}(\mathrm{v}=2) \rightarrow \mathrm{O}^{+}{ }_{1}(\mathrm{v}=0)$ increases in a parabolic way with the filling of the j shell and reaches a maximum at the middle of the j shell.

The features of the seniority scheme persist in open shell nuclei close to magic numbers in which low-energy excitations are dominated by one kind of nucleons.

$N=126$ ($\left.{ }^{210} \mathrm{Po}-{ }^{212 R n}-{ }^{214} \mathrm{Ra}\right)$

Shell model: KHMY3, $O h_{9 / 2}, 1 f_{7 / 2}, O i_{13 / 2}, 2 p_{3 / 2}, 1 f_{5 / 2}, 2 p_{1 / 2}$ for both protons and neutrons, KSHELL

Both the available experimental data (including the energy pattern of yrast states) and the shell model calculations suggest that the yrast states of ${ }^{210} \mathrm{Po}$, ${ }^{212} \mathrm{Rn}$ and ${ }^{214} \mathrm{Ra}$ are seniority type of excitations

BUT

Can the shell model calculations quantitatively reproduce the evolution of the $B\left(E 2 ; 2^{+}{ }_{1} \rightarrow 0^{+}{ }_{1}\right)$ values?

The experimental $B\left(E 2 ; 2^{+}{ }_{1} \rightarrow 0^{+}{ }_{1}\right)$ values in ${ }^{212} \mathrm{Rn}$ and ${ }^{214} \mathrm{Ra}$ need to be measured!

$N=124$ ($\left.{ }^{208} \mathrm{Po}-{ }^{210} \mathrm{Rn}-{ }^{212} \mathrm{Ra}\right)$

Shell model: KHMY3, $O h_{9 / 2}, 1 f_{7 / 2}, O i_{13 / 2}, 2 p_{3 / 2}, 1 f_{5 / 2}, 2 p_{1 / 2}$ for both protons and neutrons, KSHELL

Can we make any conclusions on the nature of yrast states in these nuclei or on the quality of the shell model calculations?

NO!

- The 6^{+}and the 8^{+}behave like seniority excitations.
- The calculated $B\left(E 2 ; 4^{+}{ }_{1} \rightarrow 2^{+}{ }_{1}\right)$ decreases from ${ }^{208} \mathrm{Po}$ to ${ }^{210} \mathrm{Rn}$ (seniority) but then dramatically increases in ${ }^{212} \mathrm{Ra}$ (?).
- The calculated $B\left(E 2 ; 2^{+}{ }_{1} \rightarrow 0^{+}{ }_{1}\right)$ s increase but no quantitative comparison to experimental data is possible.

The experimental $B\left(E 2 ; 2^{+}{ }_{1} \rightarrow 0^{+}{ }_{1}\right)$ values in ${ }^{210} \mathrm{Rn}$ and ${ }^{212}$ Ra need to be precisely measured and reliable upper limits for the $B\left(E 2 ; 4^{+}{ }_{1} \rightarrow 2^{+}{ }_{1}\right)$ needs to be determined.

RIB production from ISOLDE and experimental details

TACs comments: reduce the total transmission efficiency from 5% to 2.8% and reduced the proton current from 2 uA to $1.5 u A \Rightarrow$ a factor of $2-3$ reduction of the beam intensity at Miniball
${ }^{214} \mathrm{Ra}$ \& ${ }^{212}$ Ra experiment: ThCx target

- ${ }^{214} \mathrm{Ra}(13 \mathrm{~s})\left({ }^{214} \mathrm{Fr}(5 \mathrm{~ms})\right.$ suppressed $) \sim 3.8 \mathrm{p} / \mu \mathrm{C}+$ RILIS ionization scheme $\Rightarrow 2 \times 10^{4} \mathrm{pps}$ at $4.5 \mathrm{MeV} / \mathrm{u}$ at Miniball.
- ${ }^{212} \mathrm{Ra}(24 \mathrm{~m}) \quad\left({ }^{212} \mathrm{Fr}(20 \mathrm{~m})\right) \sim 3.8 \mathrm{p} / \mu \mathrm{C}+$ extract ${ }^{212} \mathrm{RaF}$ $\Rightarrow 10^{4} \mathrm{pps}$ at $4.5 \mathrm{MeV} / \mathrm{u}$ at Miniball.

212Rn \& ${ }^{210}$ Rn experiment: UCx or ThCx target + cold plasma ion source VD7
TACs comments: the beams have been delivered to Miniball before with intensitity of $10^{7}-10^{6} \mathrm{pps} \Rightarrow$ we have assumed $5 \times 10^{5} \mathrm{pps}$ at $4.5 \mathrm{MeV} / \mathrm{u}$.

TACs comments: the beams are possible, switching from
${ }^{214} \mathrm{Ra}$ to ${ }^{212} \mathrm{Ra}$ is possible (1 shift).

Experimental set-up - Miniball + DSSD

- Target $2 \mathrm{mg} / \mathrm{cm}^{2}{ }^{120} \mathrm{Sn}$.
- Reaction - safe Coulomb excitation.
- Beam energy 4.5 MeV/u.
- DSSD at 20 mm behind the target \Rightarrow useful angular coverage $27^{\circ}-62^{\circ}$.

Count rate estimates

${ }^{214}$ Ra case: physics goal - measure the $B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)$value Beam intensity $-2 \times 10^{4} \mathrm{pps}$
$E_{\gamma}\left(2^{+} \rightarrow 0^{+}\right)=1382 \mathrm{keV}$
$B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)=308 \mathrm{e}^{2} \mathrm{fm}^{4}$ (a half of the SM value)
${ }^{212}$ Ra case: physics goal - measure the $B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)$value and estimate $(B(E 2)<X)$ the $B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)$
Beam intensity $-10^{4} \mathrm{pps}$
$E_{\gamma}\left(2^{+} \rightarrow 0^{+}\right)=629 \mathrm{keV}$
$B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)=422 \mathrm{e}^{2} \mathrm{fm}^{4}$ (a half of the SM value) $E_{\gamma}\left(4^{+} \rightarrow 0^{+}\right)=825 \mathrm{keV}$
$B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)=485 \mathrm{e}^{2} \mathrm{fm}^{4}$ (a half of the SM value)

IS506/2018/Andrés Illana Sison

${ }^{210} \mathrm{Rn}$ case: physics goal - measure the $B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)$value and estimate $(B(E 2)<X)$ the $B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)$ Beam intensity $-5 \times 10^{5} \mathrm{pps}$ $E_{\gamma}\left(2^{+} \rightarrow 0^{+}\right)=644 \mathrm{keV}$
$B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)=520 \mathrm{e}^{2} \mathrm{fm}^{4}$ (lower experimental limit) $E_{\gamma}\left(4^{+} \rightarrow 0^{+}\right)=818 \mathrm{keV}$ $B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)=5 \mathrm{e}^{2} \mathrm{fm}^{4}$ (the SM value)

$\gamma \mathrm{s} /$ shift	$\gamma \mathrm{s} / 2 \mathrm{day}$
35	$210(7 \%)$

	$\gamma s /$ shift	$\gamma s /$ day	$\gamma s / 3$ days
$2^{+} \rightarrow 0^{+}$	235	$705(4 \%)$	$2115(2 \%)$
$4^{+} \rightarrow 2^{+}$	4	$12(30 \%)$	$36(17 \%)$

Beam-time request

Run 1 (${ }^{214} \mathrm{Ra}$ \& ${ }^{212} \mathrm{Ra}$)

Run 2 (${ }^{210} \mathrm{Rn}$)

- 1 shift for tunning ${ }^{214}$ Ra beam (RILIS).
- 6 shifts for data taking, ${ }^{214} \mathrm{Ra}$.
- 1 shift for switching to ${ }^{212}$ RaF (TAC).
- 1 shift for tunning ${ }^{212} \mathrm{Ra}$.
- 9 shifts for data taking, ${ }^{212} \mathrm{Ra}$.

In total: 18 shifts

- 1 shift for tunning ${ }^{210} R n$.
- 12 shifts for data taking, ${ }^{210} \mathrm{Rn}$.

