Probing the local environments and optical properties in halide perovskites with short-lived radioactive isotopes

Hilary Masenda

School of Physics University of the Witwatersrand Johannesburg

J. Borchert, D. Naidoo, K. Jakata, K. Johnston, K. Bharuth-Ram, H. P. Gunnlaugsson, O. Er-Raji, Y. Gupta, R. Mantovan, O. Mpatani, L.I. Lisema, S.G. Dlamini, J. Schell, A. Mokhles Gerami.

OUTLINE

- Overview and motivation perovskites
- Emission Mössbauer Spectroscopy and radiotracer PL @ ISOLDE
- □ Test Measurement + Planned Experiments + Complimentary Studies
- Expectation and outlook

Annual PV Production by Technology - Worldwide (in GWp)

Best Research-Cell Efficiencies

...to have quantitative control of the optical, electronic (and magnetic) properties of materials

....we should know the....

- \checkmark structure of the host material and properties
- \checkmark chemical identity of a defect or impurity atom
- ✓ lattice site of an impurity atom
- \checkmark interactions between impurity atoms and other defects

✓ thermal properties of defects/dopants (diffusion, binding between defects).....

Aim: Ascertain the effect of impurity atoms, lattice sites or defects on the optical properties of perovskite materials.

MOTIVATION: PEROVSKITES - Effects of ion substitution??

Emission Mössbauer Spectroscopy

- □ Element Specific: ¹¹⁹In* (Sn) and ⁵⁷Mn*(Fe)
- target Pb substitution with Sn and Fe
- □ Aim: investigate the local environment around the probe
 - ✓ lattice sites, charges (and spin) states [e.g. Sn²⁺/Sn⁴⁺]
 - ✓ Intrinsic/implantation-induced defects and their stability
 - ✓ effect of temperature, laser excitation and power on lattice location, charge states, point defects

Radiotracer Photoluminescence

- □ The technique is not element specific, but the scientific case decides; Sn and Fe,
- ¹¹⁹Sb* and ⁵⁶Mn* to correlate atomic-scale characterization from eMS and the effect of dopants/defects, and alloy disorder on luminescence and excitonic states
- Investigate the role of dopants, radiation damage and defects

EMISSION MÖSSBAUER SPECTROSCOPY @ ISOLDE

...sensitive to charge density distribution at the nucleus and symmetry around the probe...

- ✓ Charge and spin state of probe atom: Feⁿ⁺, Snⁿ⁺
 ✓ Symmetry of lattice site (V₇₇)
- Binding properties (Debye-Waller factors)
- Magnetic interactions (ferro/para)
- Paramagnetic relaxation (~10⁷-10⁸ Hz) ...plus...

Detect and distinguish up to 4-5 spectral components:
✓ substitutional, interstitial, damage, vacancy-defects,...

Fluence = $\sim 3 \times 10^{12}$ ions/cm²

EMISSION MÖSSBAUER SPECTROSCOPY @ ISOLDE

Test measurement on hybrid organic-inorganic perovskite

PEROVSKITE SAMPLES: WISH-LIST – FRAUNHOFER ISE

Depth [nm] H. Masenda

PHOTOLUMINESCENCE @ ISOLDE

Spectrometer

Horiba iHr500

Detectors

- Horiba CCD3000
- Horiba Symphony II

Cryostat

Janis SHI-950

Excitation sources

- HeCd, 325 nm, 50 mW,
- 450 nm 90 mW,
- Compact 405 nm, 4.50 mW.

PLANNED EXPERIMENTS

[P1]

[P2]

[P3]

Emission Mössbauer Spectroscopy

[M1+2] Temperature series: 100 – 400 K (⁵⁷Mn* and ¹¹⁹In*)

- ✓ Extract hyperfine parameters + temperature dependence
- ✓ Annealing of implantation damage, defects and their stability

Power series measurements: 10 K and 300 K – (56 Mn* and 119 Sb*)

Circularly polarized (right- or left-handed)– (⁵⁶Mn* and ¹¹⁹Sb*)

 \checkmark Allows for a wide range of external sample condition

✓ Annealing of implantation damage, In-defects and their stability

- [M3] eMS with laser excitation (⁵⁷Mn* and ¹¹⁹In*)
 - ✓ Influence of excitation energy and power on hyperfine interactions

Radiotracer Photoluminescence

Beam-Time Plans

eMS measurements on inorganic perovskites and alloys; on the X and B sites.

Offline PL on pre-implanted perovskite samples → fluence-dependence before using radioisotopes → PLQE

Radiotracer-PL on eMS-measured samples: Implant + measure offline

eMS and rPL on complex systems

[B]Theory DFT Calculations/ Simulations

Complimentary: [A] Laboratory- and synchrotron-based techniques

Temperature series: 10 K - 300 K (⁵⁶Mn* and ¹¹⁹Sb*)

✓ Extract peak energies and spectral linewidths

X-ray diffractions (XRD) and scanning electron microscopy, X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), X-ray Absorption Near Edge Spectroscopy (XANES), X-ray absorption fine-structure (XAFS), coherent diffraction imaging (CDI), Bragg CDI and ptychography.

REQUESTED ISOTOPES AND SHIFTS

Experiment	lsotope	Time (hrs)	Rationale	
M1, M3	⁵⁷ Mn∗	60	~ 15-20 samples alloyed on different sites, 3 hrs/sample.	
M2,	¹¹⁹ ln*	20	a few selected alloys (~ 12 samples), 2 hrs/sample.	
P1-P3	⁵⁶ Mn∗	8	\sim 15-20 samples, collections at SSP and measure offline	
P1-P3	¹¹⁹ Sb*	10	\sim 15-20 samples, collections at SSP and measure offline	
Calibration	⁵⁷ Mn*, ¹¹⁹ ln*,	19	~ 20 % based on past experience	
Contingency	⁵⁷ Mn*, ¹¹⁹ ln*,	19	\sim 20 % for exploring new phenomena in detail	

Isotope	T _{1/2}	Intensity (Ions/µC)	Activity (MBq)	eMS	PL	Shifts requested
⁵⁶ Mn*	2.6 h	4×10^{8}	29.6	N	Y	1.5
⁵⁷ Mn*	85.4 s	$(2-3) \times 10^8$	online	Y	N	8
¹¹⁹ ln*	2.4 min	(2 – 3) × 10 ⁸	online	Y	N	4
¹¹⁹ Sb*	38.2 h	5 × 10 ⁷	2.50	N	Y	1.5
	15					

 \Box Identify the lattice sites, defects and annealing behaviours \rightarrow stability,

Establish charge (and spin) states,

Ascertain the effect on excitation energy and power of hyperfine interactions,

Determine the nature of the energy scale of the disorder potential...

.. gain a deep understanding of the physics that underpins the peculiar functionalities of perovskites.... and their defect intolerance...

...new perspectives for the next generation of photovoltaic, optoelectronic, spintronic devices...

CO-AUTHORS ACKNOWLEDGEMENTS

Durban

- S.G. Dlamini
- K. Bharuth-Ram

Freiburg

- J. Borchert
- O. Er-Raji
- Y. Gupta

Geneva

- K. Johnston
- J. Schell

Johannesburg

- H. Masenda
- D. Naidoo
- O. Mpatani
- L.I. Lisema

Milan

R. Mantovan

Oxford

K. Jakata

Reykjavík

• H. P. Gunnlaugsson

Tehran

• A. Mokhles Gerami

UNIVERSITY OF

KWAZULU-NATAL

ISE

Consiglio Nazionale

delle Ricerche

UNIVERSITÄT DUISBURG ESSEN

Thank You!!!