

Overlap with Detector R&D for

Synergy workshop between ep/eA and pp/pA/AA physics experiments CERN 29 February 1 March 2024

P. Antonioli for the ePIC Collabora

INFN-Bologna

How I tried to organize this talk...

EIC fundamentals: the machine and the science program (*and timeline*)

electron beam

p/A beam

The requirements for an EIC detector (*and some physics highlights, emphasis on eA*)

The ePIC detector (*and some R&D highlights, emphasis on PID*)

A new microscope for nucleons is coming!

SLAC-MIT, HERA, ...

EIC 2031+

Three-ring design

- Hadron storage ring (HSR) 41-275 GeV
- Electron storage ring (ESR) up to 18 GeV (requires SC RF-cavities)
- Electron rapid cycling synchroton (RCS) (400 MeV to 18 GeV) [One existing hadron RHIC ring not used]

A new microscope for nucleons is coming!

"When HERA started in 1992, we only had vague notions of the structure of the proton," says Rolf-Dieter Heuer, director for particle-physics research at DESY. "The measurements from HERA showed that the interior of the proton is like a thick, bubbling soup in which gluons and quark-antiquark pairs are continu-
ously emitted and annihilated."

Three-ring design

- Hadron storage ring (HSR) 41-275 GeV
- Electron Storage ring (ESR) up to 18 GeV (requires SC RF-cavities)
- Electron rapid cycling synchroton (RCS) (400Mev to 18 GeV) [One existing hadron RHIC ring not used]

EIC physics: a machine to study the nu

- How do the [nucleonic properties such as mass and spin emerge](https://indico.bnl.gov/event/18452/contributions/73757/attachments/46822/79345/Zurek-EIC-Science-v4.pdf) fron underlying in[teractions?](https://indico.desy.de/event/41404/contributions/154332/attachments/87482/116868/eca.EIC-LHC.v2.pptx)
- **How are partons inside the nucleon distributed** in both momentum an
- How do **color-charged quarks and gluons**, and jets, interact with a nuclear
- How do the **confined hadronic states emerge** from these quarks and gl
- How do the **nuclear binding emerge** from quark-gluon interactions?
- How does a dense nuclear environment affect the dynamics of quarks and correlations, and their interactions? What happens to the gluon density saturate at high energy, giving rise to gluonic matter or a gluonic phase w in all nuclei and even in nucleons?

For a comprehensive EIC science program overview see for example: M. Zurek, "Shedding light on visibile matter: an Overview of the EIC Science", A E. Aschenauer, "The electron-ion collider: A collider to unravel the mysteries

The collider (I)

The collider (I)

The collider (2)

- High Luminosity: L= $10^{33} 10^{34}$ cm⁻²sec⁻¹, 10 100 fb⁻¹/year
- Highly Polarized Beams: 70%
	- **→ requires high precision polarimetry**
- Large Center of Mass Energy Range: E_{cm} = 29 – 140 GeV
	- $→$ **Large Detector Acceptance**
- Large Ion Species Range: protons Uranium
	- \rightarrow unique opportunity to study Q_s evolution with x

DIS processes \rightarrow physics

measure scattered electron \rightarrow e/h PID \rightarrow eCAL calorimetry

 $\int L dt$: 1 fb⁻¹ 10 fb⁻¹ 10 - 100 fb⁻¹ 1 fb $^{-1}$

measure electron and hadrons \rightarrow hadron PID

EIC extra-bonus: DIS in nuclei

- nPDF modifications
- gluon saturation (and its scale dependency from A) [jets]
- **9** 29/02-1/03/24 **P. Antoni⁻ hadronisation in cold nuclear matter and the PIC for example and the P**

semi-inclusive DIS exclusive processes

measure all particles \rightarrow hermeticity \rightarrow design IR

Highlight 1 (nuclei): gluon saturation & nPDF

DGLAP and saturation models offer different prediction (Q^2, A, x) dependence) channels \rightarrow di-hadron angular correlations, diffractive particle production in eA strategy \rightarrow large Q² span at fixed x performing A scan! $(Q_s^A)^2 \sim cQ_o^2\left(\frac{A}{x}\right)^2$

Detector requirements:

- good tracking + forward calorimeters
- + very forward instrumentation

- tag of scattered electron as a prerequisite
- **charm** \rightarrow tag photon-gluon fusion \rightarrow direct access to gluon

Detector requirements:

- vertexing (charm tagging)
- electron identification
- y resolution over large space!

Highlight 2: access to gluon Sivers function: TMD

 $d\sigma$ $dx dQ^2 dz d\phi_S d\phi_h dp^h_T$

- 6-fold differential cross sections in SIDIS
- \triangleright Azimuthal asymmetries and their modulations
- access to Sivers TMD (D. W. Sivers, Phys. Rev. D 41, 83 (1990))
- access to gluon Sivers TMD via di-hadron and di-jet
- The Sivers function $f^{\perp}{}_{1T}$ encapsulates the correlations between a parton's transverse momentum inside the proton and the spin of the proton
- GSF (Gluon Sivers functions) poorly known (U. D'Alesio et al, JHEP 119 (2015))

Detector requirements: azymuthal acceptance, PID, vertexing (HF), tracking, HCAL (for jets)

Sensitivity for Single Spin Asym in di-charm ATHENA simulation

Highlight 3: hadronization in CNM

EIC White Paper https://arxiv.org/abs/1212.1701

- effect foreseen for D^0/π (based on different FF) might be there also for HF baryons
- usually pre-hadron and absorption in CNM discussed for mesons (Kopeliovich et al., Nucl.Phys. A740 (2004) 211-245)
	- role of **di-quark** for baryon hadronization (Adamov et al., Phys.Rev. D64 (2001) 014021

Results for light hadrons only at much lower energy (fixed target e beam 27.6 GeV)

Detector requirements: PID and HF-tagging

Physics \rightarrow detector requirements

- Hermetic detector, low mass inner tracking
- Moderate radiation hardness requirements (w.r.t. for example LHC!)
- Electrons & jets in approx 8η units
- Good momentum resolution
	- \triangleright central: $\sigma(p)/p = 0.05\%p \oplus 0.5\%$ \triangleright fwd/bkd: $\sigma(p)/p = 0.1\% \oplus 0.5\%$
- Good impact parameter resolution
- Excellent EM energy resolution rentral: $\sigma(E)/E = 10\%/\sqrt{E}$ backward: $\sigma(E)/E < 2\%/\sqrt{E}$
- Good hadronic energy resolution \blacktriangleright forward: $\sigma(E)/E \approx 50\,\%/\sqrt{E}$
- Excellent PID π /K/p ▶ forward up to 50 GeV/c central: up to 8 GeV/c
	- backward: up to 7 GeV/c
- Low pile-up, low multiplicity., low int. rate (500 kHz at full lumi)

Hermeticity, low material budget tracker and PID make EIC detector design challenging

EIC Yellow Report: Nucl. Phys. A 1026 (2022) 122447, arXiv:2103.05419

Physics \rightarrow Detector requirements

EIC Yellow Report: Nucl. Phys. A 1026 (2022) 122447, arXiv:2103.05419

29/02-1/03/24 **P. Antonioli - Overlap with detector R&D for ePIC@EIC P. Antonioli - Overlap with detector R&D for ePIC@EIC**

ePIC design (barrel)

Magnet

• New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (µRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- $PbWO₄$ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

ePIC design (barrel)

Magnet

• New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (µRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- $PbWO₄$ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

29/02-1/03/24 P. Antonioli - Overlap with detector R&D for ePIC@EIC 16

5.34m

ePIC tracking: SVT and MPGD

29/02-1/03/24 P. Antonioli - Overlap with detector R&D for ePIC@EIC

PID critical for EIC science

e-π separation

Cherenkov PID complements ECAL effort, especially at low momenta/backward region

hadron identification ToF complement

 p/A bea

more than one technology needed to cover the entire momentum

ePIC PID sub-systems

Photosensors R&D

HRPPD: large area microchannel plates provided by INCOM with ePIC/EIC contributing to engineering

one photon \rightarrow a multi-pixel cluster

SiPM:

so far not used in RICH detectors, robust R&D to prove annealing cycles can manage DCR increase due to

 C_2F_6 gas

ePIC, extended design (out of barrel)

- EIC physics includes final-states particles at $|\eta| > 4.5$.
- Need sub-systems integrated within and alongside the accelerator beam line
- Far-Backward
	- **Luminosity monitor**
	- ▶ Low- Q^2 tagging detectors \Rightarrow scattered electron at small angles

• Far-Forward

- \triangleright B0 spectrometer \Rightarrow silicon tracking system and photon EM calorimetry
- Off-Momentum Detector (OMD) \Rightarrow for particles from nuclear breakup
- Roman Pots $(RP) \Rightarrow$ for tagging and reconstruction of protons
- Zero-Degree Calorimeter (ZDC) \Rightarrow for photons and neutrons

For exclusive physics instrumentation along the beamline is crucial

Streaming readout architecture and electronics

- **Triggerless** streaming architecture gives much more flexibility to do physics
- on-going **ASIC** developments for several detectors: SALSA (MPGD), ALCOR (dRICH), EICROC (AC-LGAD), CalSIPM (H2GCROC), HRPPD (HGCROC)
- Integrate AI/ML as close as possible to subdetectors \rightarrow cognizant detector

New microscope for nucleons delivery time

- construction starts following RHIC shutdown (2025)
- **7 years** from operations
- first year for machine commissioning
- 2032-2034 toward full luminosity

new microscope for nucleons installation schedule

- Solenoid and Barrel HCal by Jan 2029
- § all other subdetectors need to be ready between 06/29 to 06/30

With this schedule R&D not expected to extend beyond 2027

A new Collaboration in HEP/NP!

Minimal thoughts given this workshop/talk

- **R&D overlap?** timescale for LHeC matters w.r.t. to "overlap"
- MAPS technology currently developed in ALICE/ITS3 will be largely used in ePIC and it is expected to be used in ALICE3 --> see next talk by Walter Snoeys
- besides MAPS, detector R&D in ePIC is particularly innovative for photosensors applied to PID detectors, intensive use of SiPM in calorimeters and certain choices of calorimeters design (barrel ECAL PbSciFi with hybrid imaging part, forward HCAL à la CALICE) [<mark>link with DRD, see Didier's talk</mark>]
- ePIC detector has much more emphasis on PID than "LHeC detector" PID is very relevant for several aspects of EIC science, does this apply to LHeC science?
- depending on LHeC timescale detector R&D overlap might be there for Detector 2 and/or ePIC upgrades. However, several **overlap** likely apply to ALICE (ALICE3) and LHCb upgrades under discussion for LHC Run5/6

29/02-1/03/24 overlap if not in time can be in technology: depending on actual LHeC detector timescale, some technologies will likely further *evolve* (ex: BSI SiPM, HRPPD, ...)

- **EIC project well on track** TDR (both for the accelerator and the detector) to be submitted by 2024
- **ePIC Collaboration** for "Detector 1" since 2022 and is maturing detector design toward TDR
- **ePIC detector** addresses the challenges of an EIC detector to deliver physics goals
- **ePIC** will be innovative: several novel technologies that will advance the state of the art
- construction and installation **timelines/schedule** understood

credits for several slides and input: E. Aschenauer, S. Fazio, J. La Joie, S. Dalla Torre, T. Ulrich, M. Zurek

Collider params

Hadron Storage Ring: 40 – 275 GeV Electron Storage Ring: 5 – 18 GeV

 \rightarrow 25 mrad Crossing Angle

Machine Conder https://www.l

Params a

Parameter Center-of-n Energy [Ge Number of Particles pe Beam curre Horizontal Vertical em Horizontal Vertical ß-f Horizontal Horizontal Vertical div Horizontal Vertical bea IBS growth Synchrotro Bunch leng Hourglass Luminosity

 \rightarrow Hadron beams cooling with innovative technique (Coherent Electron Cooling using FEL)

V.N. Litvinenko and Y. S. Derbenev, PRL 102 (2009) 114801

Yellow report requirements

