Beam separation scheme and layout of the interaction region for e-h collisions

K.D.J. André, B. Holzer, T. von Witzleben, L. Forthomme for the LHeC study group

(LH ₀ O	CDR (2012) & CDR (2020)
	arXiv:1206.2913 arXiv:2007.14491
Energy frontier electron hadron	Offshell conference (2021)
to 10^{34} cm ⁻² s ⁻¹ to complement the	Offshell(2021)
unprecedented TeV scale DIS	EPJC (2022)
lepton accelerator design based on	EPJC(2022)
the energy recovery technology.	

Introduction to the LHeC eh interaction region

Three beams crossing the interaction region:

* Colliding electron and proton beams have an optimised separation scheme,

* The non-colliding proton beam is a spectator and both proton beams have a large crossing angle of **7 mrad**,

* Interaction Point (IP) shifted by **Δt/4 = 6.25 ns or 1.88 m**.

proton optics FCC-eh: L* = 23 m & β* = 30 cm || LHeC L* = 15 m & β* = 10 cm

K.D.J. André - Synergy workshop between ep/eA and pp/pA/AA physics experiments - March, 1st 2024

Introduction to the LHeC eh interaction region

Three beams crossing the interaction region:

* Colliding electron and proton beams have an optimised beam separation scheme,

* The non-colliding proton beam is a spectator and both proton beams have an **7 mm** orbit bump and a **350 mrad** crossing angle at the IP,

proton optics FCC-eh: L* = 23 m & β* = 30 cm || LHeC L* = 23 m & β* = 20 cm

K.D.J. André - Synergy workshop between ep/eA and pp/pA/AA physics experiments - March, 1st 2024

K.D.J. André - Synergy workshop between ep/eA and pp/pA/AA physics experiments - March, 1st 2024

e-p beam separation scheme optimisation

 $-\frac{1}{3}L^*$

IP

* Optimization to extend the distance

to separate the e⁻ beam inserting Q0

* Optimization to reduce the electron

beam size at Q1A with Q0F & Q0D

1⁄3 L*

ЧО

Based on the difference in beam rigidities of the colliding beams.

ЦO

 $-\frac{2}{3}L^*$

g

-L *

Q0 magnet design

.....

Q0

|Btot| (T)

2.335

2.206

2.076

1.946

1.687

1.427

1.298

1.168

0.908

0.779

0.649

0.519

0.390

0.130

p

Q1A

S. Russenschuck,

M. Liebsch

Critical energy Ecrit [keV]

K.D.J. André - Synergy workshop between ep/eA and pp/pA/AA physics exp

8

Combined hh|eh interaction region

Two modes of operation:

- hh collisions in IP 1, 2, 5 and 8, no e⁻ beam
- eh collisions in IP 2 and hh collisions 1, 5 and 8

Courtesy from Massimo Giovannozzi (2019)

Accelerator considerations to **combine the ALICE and LHeC experiments** at point 2 of the HL-LHC:

- Flexible interaction region optics and lattice to provide e-h and h-h alternatively.
- A beam separation scheme guides the electron beam after the collision point back to the ERL return arc.

K.D.J. André - Synergy workshop between ep/eA and pp/pA/AA physics experiments - March, 1st 2024

Synchrotron radiation optimization for the combined hhleh

K.D.J. André - Synergy workshop between ep/eA and pp/pA

106 mm separation at Q1A + 13 mm ($\equiv 20\sigma_e$) from the half transverse width of the electron beam.

Synchrotron radiation optimization for the combined hh|eh

Summary

* LHeC: **50 GeV** electron beam from an ERL colliding with one **7 TeV** proton beam from the LHC alongside the HL-LHC hadron-hadron operation and enables the alternate operation of eh and hh physics at IP2.

* Ongoing studies led by **T. von Witzleben** to realise a proton lattice and optics design with an interaction region enabling alternate e-h & h-h operations.

* **L. Forthomme** is addressing the machine-detector interface challenges with collimation studies of the synchrotron radiation in the interaction region.

* The symmetrisation of the detector design would make possible the study of **eh and hh** physics at IP2. The combination of the LHeC and ALICE upgrades could significantly expand the energy frontier for electron-ion collisions.

Detector design - EPJC

Silicon tracker, surrounded by an electromagnetic (LAr) calorimeter and a combined solenoid and dipole magnets enclosed by a hadronic calorimeter and muon system. Need of forward-backward symmetry to include hadron-hadron physics.