

LHeC machine-detector interface, detector shielding & protection

Synergy workshop between ep/pA and pp/pA/AA physics experiments

K.D.J. André (CERN) L. Forthomme (AGH) B. Holzer (CERN) T. von Witzleben (RWTH Aachen) laurent.forthomme@cern.ch>

29 Feb-1 Mar 2024

Introduction

Large fluxes of synchrotron light expected from steering of electron beam in the interaction region

• can potentially lead to premature aging of all optical elements downstream the e^- beam path

e - p lattice for L^* = 15 m. Adapted from: K. J. André

Scope of this study:

- evaluate the radiated power in all elements of the e/p beamlines
- provide hints for mitigation of synchrotron radiation on critical elements

Critical energy – a reminder

Given an electron beam circulating in an electromagnetic field,

$$\boldsymbol{E_{c}} = h \underbrace{\left[\frac{3}{2} \frac{\gamma^{3} c}{\rho}\right]}_{\omega_{c}}, \boldsymbol{P_{\text{synchr}}} = h \left[\frac{2\alpha_{\text{em}}}{3} \frac{\gamma^{4} c^{2}}{\rho^{2}}\right]$$

e.g. in a dipole, with a constant *B* field

$$E_c = h\left[\frac{3}{2}\frac{\gamma^3 c^2}{p_e}|B|\right]$$

Source: W.R. Leo, Techniques for Nuclear and Particle Physics Experiments

Critical energy - the lower the better

Source: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

A bit of technicalities

- Simulation tool: BDSIM, wrapper around Geant4 with standardised definition of common beamline elements
- In this stage of the study, only considering electron beamline components (simulating a 50 GeV e⁻ beam)
 - proton side: QX/QY treated as upstream/downstream sector-bends; full description and optimisation work: see talk by T. Von Witzleben
 - sampling at all optical elements, conventional **EM** physics list (ionisation, bremsstrahlung, mult.scattering), with addition of **synch_rad** EM processes (*E*^{min} = 100 keV)
- Lattice assumption: critical energy optimum, as optimised upstream
 - see talk by K. J. André for details about optimisation
 - "realistic", circular-elliptical beamline optimised for three-beam circulation (previously using an elliptical beamline), 0.5 × 0.3 cm² apertures

Simulated electron beamline

AGH

Synchrotron radiation along e^- beamline

018

Flux of photons scored right before Q1A, and without collimator; the x = 0 axis refers to the electron beamline coordinate system (i.e. red curve on rhs. figure)

First observations

Q0s already act as a strong passive shielding for all downstream e/p beamline elements, even without collimator upstream the IR

Critical energy

 E_c , as computed as the median of the dN_{γ}/dE_{γ} flux distribution:

Photon energy distribution at the entrance of the detector dipole (left), and at the end of the e - p lattice, upstream the proton Q1A (right)

Introducing some shielding – at Q1A

Simulation of the addition of a shielding upstream the detector dipole, right after QY/QX pair

- collimator with a ~1 cm aperture
- tested a few collimator thicknesses and materials

Left to right: without collimator, with a 4 cm upstream collimator after QX, with a 10 cm collimator at the same location.

Introducing some shielding - end of detector volume

Simulation of the addition of a shielding upstream the detector dipole, right after QY/QX pair

- collimator with a ~1 cm aperture
- tested a few collimator thicknesses and materials

Left to right: without collimator, with a 4 cm upstream collimator after QX, with a 10 cm collimator at the same location.

Geometrical observation: shielding \rightarrow partial scraping of intermediate-energy flux of photons entering the proton beam region

Photon critical energy at the exit of beamline elements

No difference to be expected in critical energy along beamline elements

- different assumptions on a shielding introduced upstream the interaction region
- ~flat 20% reduction of critical energy downstream the shielding

UU AGH

More space between QX/QY and Q1s to fit additional TAS/collimators/...

Source: LHC Design Report, matching section in IR2 - 10.5170/CERN-2004-003-V-1

Larger free drift (half-)length $L^* \rightarrow$ increased space for experimental apparatuses + TAS/TCL/Qx

Requires a re-optimisation of the full beamline optics & Twiss parameters (K. André):

- **proton side**: no need for extra half-quadrupole
 - addition of two off-centered quadrupoles: Q0F and Q0D
 - increased space for dipole, same "crossing" angle at interaction point
- electron side: extra drift between detector dipole & Q1A, amended bending angle to maintain separation parameters

Operational parameters for 15 and 23 m

- Re-optimisation (K. André) of the beam & lattice parameters given the released geometrical constraints
 P_{syn}/ɛ_c-based minimisation, further optimised for horizontal beam size
- Critical energy minimisation for two *L*^{*} scenarios:

Parameter	<i>L</i> * = 15 m	<i>L</i> [*] = 23 m
initial drift	2.67 m	6.74 m
Q0F gradient	30.1 T/m	29.0 T/m
Q0D gradient	-18.4 T/m	-21.9 T/m
Q0F/D angles	2.07 mrad	0.83 mrad
Q0F/D lengths	2.18 m	1.85 m
half IR length	7.85 m	11.95 m
half IR angle	5.38 mrad	=

Twiss parameter	<i>L</i> * = 15 m	<i>L</i> * = 23 m
$\overline{\alpha_x, \alpha_y}$	-0.036/99.949	-0.079/6.279
eta_x,eta_y @ Q1A	9.1/48.81 cm	43.5/16.99 cm
D_x, D'_x	13.4/1.2 cm	5.2/0.3 cm
D_y, D'_y	0	=
$\varepsilon_{x,y}$	$5 imes 10^{-10}$	=
σ_E	0.28 MeV	=

Lattice (left) and beam (right) operational parameters for the two free drift lengths scenarii

L* and photon hits energy distributions outside IR

Number of photon hits scored as a function of the free-drift length at the exit of the detector dipole, for L* = 15 m (left) and 23 m (right).

L* and photon energy distributions at the end of e^- beamline (final collimator before Q1A)

Number of photon hits scored as a function of the free-drift length at the Q1A entrance, for $L^* = 15$ m (left) and 23 m (right).

Photon critical energy at the exit of beamline elements

- Roughly a factor 2 reduction expected in critical energy for all major beamline elements
- Moreover, integrated along the full electron beamline/arc:

Parameter	<i>L</i> * = 15 m	<i>L</i> * = 23 m
Mean free path	1.00 m	2.13 m
Ec	267.8 keV	123.3 keV

Summary and outlook

Study of the machine-detector interface (again) on rails

Full simulation of the (electron, for now) beamline components in BDSIM

- first studies of synchrotron photon energy spectra and critical energy under several assumptions
- already performed: effect of shielding upstream the detector volume (material, opening, thickness), increase of L*

Already providing some promising insights on beamline constraints

- worse case scenario (L^* = 15 m, no shielding of detector area): $E_c \sim 270$ keV integrated over full beamline
- synchrotron radiation already under control for $L^* = 21 \text{ m}$

A look forward

Synergies to be developed with ep/eA@CERN Study WG4: integration of detectors constraints in this framework

Spares

Name	Туре	L (m)	Angle (mrad)	S Start(m)	SEnd (m)
uDRIFT50	Drift	0.5	0.0	0.0	0.5
uDRIFT_Q0	Drift	1.87198	0.0	0.5	2.37198
uDRIFT30_0	Drift	0.3	0.0	2.37198	2.67198
UBEND_QY	SBend	2.17713	2.872436	2.67198	4.8491
uDRIFT20	Drift	0.2	0.0	4.8491	5.8491
UBEND OX	SBend	2.17713	2.872436	5.8491	7.22623
uDRIFT30 1	Drift	0.3	0.0	7.22623	7.52623/7.5062
COL BEND 0	R-Collimator	0.02	0.0	7.50623	7.52623
BEND Ø	SBend	15,70306	14.947956	7.52623	23,22929
dDRIFT30 0	Drift	0.3	0.0	23.22929	23,52929
dBEND QX	SBend	2.17713	2.872436	23.52929	25,78642
dDRIFT20	Drift	0.2	0.0	25,78642	25,98642
dBEND QY	SBend	2.17713	2,872436	25,98642	28,08354
dDRIFT30_1	Drift	0.3	0.0	28.08354	28.38354
dDRIFT_Q0	Drift	1.87198	0.0	28.38354	30.25552
dDRIFT50	Drift	0.495	0.0	30.25552	30.75052
COL END 0	R-Collimator	0.005	0.0	30.75052	30.75552

 $L^* = 15$ m beamline description