

LHC-BGI: Design with 4DPhoton Timepix4 Mount Clara Fleisig

HL-LHC BGI Meeting – 24th January 2024

Objectives for 4DPhoton Based Design

- Reduce cost
 - Use standard CF flanges instead of custom rectangular CF flange
- Reduce complexity
 - Electronics and cooling outside of vacuum
- Modular design
 - Could use most of the same components on different accelerators, with acceleratorunique 4-way cross
 - Easier to replace single components (e.g. replace Timepix, but use the same tank)

Conceptual Design Considerations

Goal #1. Provides measurements with < 5% uncertainty (consider beam size contribution to emittance uncertainty, and beam position)

Design Considerations	Pre-Build Testing	Verification
 Large electrodes should be sufficiently large to ensure uniform E-field Electrodes should be parallel to prevent profile distortion Magnetic field must be sufficiently high and uniform Electrodes and magnet should be well aligned 	 CST & IPM simulations with worst-case scenario beams (e.g. worst beam position & space charge) Check uniformity of electric and magnetic fields with CST Simulate misalignment within tolerances with CST and IPM? 	Compare BGI measurements with those of other instruments

Conceptual Design Considerations

Goal #2. BGI should fit the given space

Design Considerations Pre-Build Tes		Pre-Build Testing	Verification
• •	Accommodate 50 mm LHC beam-pipe Fit inside existing 7 Tesla magnet ~10 mm of space required for electronics and cooling	CAD model with attention to tolerances	 Smooth installation process

Goal #3. Meet LHC standards for installation (e.g. vacuum, HV, impedance)

Design Considerations	Pre-Build Testing	Verification
 Follow HV design guidelines (e.g. 3 kV/mm in vacuum) Minimize sudden changes in beam-pipe No materials with high outgassing 	 Design approval from vacuum group Impedance simulations 	 HV testing Vacuum acceptance test

Conceptual Design Considerations

Goal #4. Bunch-by-bunch Measurements

Design Considerations	Pre-Build Testing	Verification
 Increase electric field so electron arrivals from one bunch do not overlap with those from the next bunch 	• Calculate $t_{drift} = \sqrt{\frac{2xm}{qE}} \ll 25 ns$	Compare bunch-by- bunch measurements with other instruments

Goal #5. Increase event rate

Design Considerations	Pre-Build Testing	Verification
 High electric field integrated over ionised electron path length Thin entrance window if necessary 	Compare electric field with PS and SPS instruments to predict event rate	 Measurement with < 5% uncertainties integrating over period where beam is stationary

Design Ideas

Design Concept

TPX4 Flange

- Minimize distance between TPX4 and flange
- Potentially attach electrode to the tank instead of the flange
- Allow easy replacement of TPX4

Choosing Flange Sizes and Electrodes

Varying Flange Size

CERN

IL-LHC PROJECT

Clara Fleisig, 24 Jan 2024

Varying Flange Size Recommendations

Other Considerations

> CF250 require M10 instead of M8 screws

Recommendation

- Recommend using CF250, given current information
- Consider investigating electrode geometries
- Must simulate with magnetic field CST file

Considering Mechanical Constraints

Mechanical Constraints from Magnet

All designs with flange sizes > CF100 only have 130mm of vertical space

HL-LHC BGI Meeting

Potentially Increasing Magnet Size

Simulation from Swann:

Our Magnet Model:

$$\vec{B} = \frac{\mu_0 I R^2}{2} \left(\frac{1}{(R^2 + y^2)^{3/2}} + \frac{1}{(R^2 + (d - y)^2)^{3/2}} \right) \hat{y}$$
$$\vec{B_{centre}} = \frac{\mu_0 I R^2}{(R^2 + \frac{d^2}{4})^{3/2}}$$

Conclusion: We can likely increase magnet size by ~20 mm

HV Feedthrough Design Ideas

HL-LHC BGI Meeting

Clara Fleisig, 24 Jan 2024

Recommendation

- 3b is best case, but will likely have impedance issues
- 1b is second best case, but will likely not fit inside magnet
- Simulate impedance for 1b and 3b
- Investigate impedance mitigation for 3b
- Inquire about 4 cm increase in magnet size for 1b

Next Steps

HL-LHC BGI Meeting

Clara Fleisig, 24 Jan 2024

Next Steps

Decisions to be made

- 1. High voltage feedthrough approach
- 2. Is the magnet sufficient? What changes should we request?
- 3. How to hold/secure electrodes

Simulations to be done

- 1. Beam near the edges of Timepix4 detector
- 2. Design and simulate ion trap
- 3. Simulations for tilt tolerances
- 4. Simulation with final detailed mechanical design

Other

• Talk to magnet group about increasing magnet size

Appendix

Standard Flanges

Name	Thickness (mm)	Flange OD (mm)	Screws
CF63	17.3	131.5	M8
CF75	19,1	117.5	M8
CF100	19.8	151.6	M8
CF125	21.3	171.5	M8
CF150/160	22.4	202.4	M8
CF200	24.6	253.2	M8
CF250	25.9	304.0	M8
CF275	28.4	336.6	M10
CF300	28.5	368.3	M10

HL-LHC BGI Meeting

Clara Fleisig, 24 Jan 2024

Mechanical Constraints with Option 1a

Possible flanges that could be used instead of CF160: CF63 – CF300

Estimates include:

- 10 mm for electronics
- 50 mm for LHC beam pipe
- 6x3 mm for bolts
- 44 mm for HV feedthrough

Estimates do **not** include:

- Tolerances
- 15.5 mm for HV feedthrough flange top-edge

Flange Size	∆y- flange	∆y- design	∆y- magnet
CF63	17.3 mm	192 mm	142 mm
CF100	19.8 mm	202 mm	132 mm
CF160	22.4 mm	212 mm	130 mm
CF200	24.6 mm	220 mm	130 mm
CF300	28.5 mm	236 mm	130 mm

Conclusion: Will need to expand magnet yoke by 5 to 10 cm

