Half-Cylinder Thermal Cycling & Testing at Liverpool

Matt Brown, Tim Jones,

Frascati OEC Integration Workshop 31/01/24

Outline

• Use of Integration Cradles at Liverpool

- Assembly area layout
- Movements of Integration Cradles

• Integration Cradle Modifications

- Limitations in length and width
- Transition into Cold Room

• Half-cylinder Test Enclosure

- General Requirements
- Installation of Integration Cradle
- Type-1 Services connections & Routing
- Thermal cycling system (-55C)

Use of Integration Cradles at Liverpool

- Intention is to use tooling system designed by Frascati
- We have procured materials for TWO cradles and have plates being manufactured
 - We do need to understand the specification of a few components particularly relating to the rotation mechanism
 - We also need to understand the precise details of how the system is intended to work and, eventually, to learn from experience at Frascati
- We have not done anything relating to the central support and slider mechanisms for the half-cylinder mating
 - We have a slight concern that the base, as designed, may not fulfil all the requirements we might have coming from space and access restrictions

Integration Cradle Modifications

- Sketch shows cradle located on sliders in 'open' position (136mm)
 - Shorten depth by (up to) 220mm to ease movement around cleanroom
 - Would have to REMOVE wheels before moving sliders to 'closed' position
 - What about the other orientation ?
 - Maybe OK at 100 reduction but not much more – every little helps!

Integration Cradle Modifications

- Beam supporting front wheels extended to avoid clashing with base
 - Extension of 125mm shown

Integration Cradle Modifications

- When the sliders are in their 'open' position displaced by 136mm there is still 113mm of rail 'free'
 - Could the base be reduced by 2 x 100 mm making it 1700 wide ?

Critical Dimensions – Endcap Integration

Opening & Closing: HC at 880, Sliders at 0 (closed)

Opening & Closing: HC at 880, Sliders at 136

Opening & Closing: HC rolled over Sliders at 136

Opening & Closing: HC at Zero

Assembly of UK Endcap

- In the following I show ...
 - L2 half-cylinders being populated with Type-1 services & test
 - First L2 half-cylinder being populated with half-rings & connectivity checks. Second half-cylinder being populated with Type-1 services & test
 - First complete L2 half-cylinder being fully tested with CO₂. Second L2 half-cylinder being populated with half-rings & connectivity checks. L3 half-cylinders being populated with electrical services & test

L2: Services Loading

L2: Half-ring loading & Services Loading

loading & Test

Services loading & Test

L2 Half-Cylinder Test & L2 Half-ring Loading L3 Services Installation

L2 Half-cylinder to Integration, 2nd L2 to Half-cylinder Testing, L3 Services Installation & test

L2 half-cylinder at Integration Station

L3 Services loading & Test

L2 Half-cylinder Test &

Thermal Cycle

L2 Joining

1st L2 Cradles to Loading Bay

loading & Test

L3 Cradle to Integration Stand-by, 2nd L3 displaced to allow 2nd L2 to transfer to Loading Bay

2nd L2 entering loading bay

L3 Cradles at Integration / Stand-by

First L3 at Half-ring Mounting & Test, 2nd L3 Parked, L4s - Services assembly & Test

Half-Cylinder Test Enclosure in -20°C Cold Room

Half-Cylinder Test Enclosure

Services Routing

-55°C Chiller

- Julabo Presto A70
 - Min temp = -70°C
 - Cooling power > 0.4kW @ -60°C

Cooling capacity 1									Medium: Ethanol
°C	20	0	-20	-40	-50	-60	-70		
kW*	1.12	1.1	0.98	0.9	0.69	0.45	0.23		
Cooling	capacity	2							Medium: Ethanol
°C	20	0	-20	-40	-50	-60	-70		
kW*	1	0.91	0.8	0.75	0.55	0.38	0.12		
Cooling	capacity	3							Medium: Thermal HL90
°C	20	0	-20	-30	-40	-50	-60	-70	
kW*	0.96	0.87	0.8	0.76	0.72	0.61	0.35	0.12	

Test Enclosure Mechanics

- Available cooling power sets the specification for the thermal enclosure
 - Need Heat leak < 0.6kW @ -60°C
 - $Q = k.A.\Delta T/t$
 - Area = 2 x (4x1.7) + 2 x (4x1.5) + 2x(1.5x1.7) = 24sqm
 - *t* = 0.1*m*
 - *∆T* = -35 °C
 - k=0.05 W/mK
 - *Q* = 420W
- Modular construction using metal-skinned foam cored sandwich panels would work well
 - Typical quoted k <0.03 W/mK
 - Need to watch for heat-leaks at joints
- Main issue is that what we want is very non-standard but early indications are positive – at a price !

