

Fibre Optic Sensors (FOS) for ITk humidity monitoring – Update

Simon Connell¹, L Truong¹, Lerothodi Leeuw², Doomnull Unwuchola², Xola Mapekula¹, Matt Connell¹, *1. University of Johannesburg (UJ), 2. University of the Western Cape (UWC),*

The FOS Package

The FOS package:

- 1x Pt10k conventional temperature sensor
- 1x Honeywell HIH400 conventional humidity sensor
- 1x LPG (long period grating) FOS to measure humidity
- 2x FBG (Fibre Bragg Grating) 1 Radiation-soft (to measure dose), 1 Radiation-hard (to measure temperature)
- 2x Neoceram plates (50x18x4mm), tightened with titanium screws
- NOTE: fibre minimum bend radius 15mm

*Discussed further at end of talk

Package dimensions

- All ingredients are ordered up to 25%
- Final FDR concerns need to be addressed before 75% order

ltem	Source	#	25%	Status	75%	Status	Lead time (weeks)
MTP Connector	Via CERN	12	-	-	-	Arrived	3
LPG	University of Sannio	64	16	Ordered: 21 Dec 2023	48	To order	7 – 14
FBG Radiation soft	FiberCore, FBG UV from Fibercore B/Ge 1250/1500 fiber, Laser Components	64	16	Ordered: 23 Jan 2024	48	To order	6-8
FBG Radiation hard	FBG FEMTO written on Fujikura rad-hard fiber RRSMFB from Engionic Femto Gratings	64	16	Ordered: 23 Jan 2024	48	To order	6-8
NeoCeram Plates	TOP SEIKO CO., LTD	70	I.	-	-	Ordered: 13 December 2023	10
PEEK Wire, type 0	Polyflour	-	-	-	1km twisted double 1km twisted triple	Ordered: 08 August 2023	18
HIH4000	RS-Online	64	16	Arrived	48	To order	1
Pt10k	IST-AG P10K.520.2K.Y.1400.D.S	64	16	Arrived	48	To order	-

Production Status

25% FOS production to begin as soon as FBG and LPGs are delivered.

Production process

- Package assembly: **2-3 hours**
- Calibration tests: **3 days**
- Packaging: 1 hour
- Currently done in batches of 2 sensors looking to move to 4

Personnel at CERN

FOS packages are assembled at the EP-DT lab, Meyrin Bdg. 168, R-G14

- Xola: Present July 16th
- Doomnull: Feb. 5th May
- Matt: Feb. 2nd April 30th
- 2 more students will be trained in FOS assembly.

Code package

- Automates full process of raw data
- Goal is for it to be easily downloaded and used by non-experts.

Grounding Discussion

Issue raised recently by Strips

- Titanium screws may become charged under radiation.
- Must be grounded to avoid this.
- Proposed solution: use an aluminised Mylar strip and wire to ground the screws to the carbon fibre (CF) structure.
- Strip can be secured by the nuts
- Can be incorporated into the assembly process.

Designs not finalized – the holes around the screws are exaggerated to make screws visible (LEFT) and thickness is exaggerated (RIGHT)

Notes on assembly process

Fibre length AB: 250-300mm

Minimum bend radius 15mm

Securing sensors in the package:

- 1. LPGs ordered with extra fibre spliced to the sensor (hence splice 1).
- 2. LPG is on a separate fibre to FBGs this is because it requires a pre-strain.
- 3. Sensors are secured in the Neoceram.
- Finally, the two fibres are joined: (hence splice 2) to fit in the splicer you need a decent length of fibre (bottom left image)

Bottom right: FOS assembly, pre-strain applied with a weight (3).

Shortening the length AB

Minimum bend radius 15mm

Simple changes

- AB length easily reduced to 200mm
- Splices easily reduced to 30mm, potentially 20mm.

Possible further changes

- 1. Different assembly process splice fibres before applying pre-strain to LPG
- Would require a lot of testing
- Likely very tricky
- 2. Fold AB over the Neoceram
- Must keep in mind min. bend radius
- Request LPG splice further from the sensor itself

Fibre length AB: 250-300mm*

Operation

- FOS are affected by temperature, dose and relative humidity.
- Knowing initial values of these variables, the combination of LPG and both FBGs can be used to extract variations in all three variables.

Thank you!

Code Status

Code package

- 1. Takes in raw spectra (LabVIEW, enLIGHT)
- 2. Develops calibration plots
- 3. Extracts Relative Humidity, Temperature and Dose from FOS
- 4. Compare to reference sensors
- 5. Returns all the above as series of plots

Aims

- Make it easy to use by non-experts
- Automated spectra analysis for peak acceptance.