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WHAT IS THE UNCERTAINTY  OF MY RESULT?ΔTH

๏ increasingly urgent to address with    (  HL-LHC) 

‣ what does  mean if  non-negligible?

‣ interpretation of data in need for robust :  PDF fits,   in ATLAS jets, …

๏ various sources that contribute to :

‣ , :  parametric uncertainties    exp. extraction 

‣ :  parton distribution functions (PDFs)    fits 

‣ :  hadronisation, UE, …    parton showers [e.g. HERWIG vs. PYTHIA] 

‣ :  missing higher-order (MHO) corrections 

ΔEXP ↘ ↭

5σ ΔTH

ΔTH χ2

ΔTH

Δαs
Δparam ↭

ΔPDF ↭

Δnon pert. ↭

ΔMHO
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Focus here 



CONVENTIONAL APPROACH FOR   —  SCALE VARIATIONΔMHO

๏ approximation for an observable  @  (next-to-)  leading order:

‣ N LO:

๏ truncation of series induces a sensitivity to terms of the next order

n

n

3

Σ ≃ Σn(μ) =
n

∑
k=0

Σ(k)(μ)
∝ αn0+k

s

μ
d

dμ
Σn(μ) = 𝒪(αn0+n+1

s ) = 𝒪(ΔMHO)

Canonical scale variation

Canonical method: Scale Variation

Variation by a factor of 2 about a “central” scale µ0

⌃ ⇡ ⌃NnLO(µ0) ± max
µ0/2µ2µ0

|⌃NnLO(µ) � ⌃NnLO(µ0)|
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Very often, the uncertainty is left asymmetric

Marco Bonvini Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders 10

convention:  
[½,2]

µ0 = 2ĤT

yb 2 [0, 1] y
⇤ 2 [1, 2]
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  scheme dependence 
  
↪
↪ α ≪ αs



ISSUES WITH STANDARD SCALE VARIATIONS

๏ known to be insufficient:

‣ exclusive jet(s)  (veto) 

‣ ratios  (correlation?) 

‣ cancellations  (e.g.   vs.  in DY) qq̄ qg
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Figure 3: The cross sections for producing a W+ (left) or W� (right) as a function of the

virtuality Q normalised to the N3LO prediction. The uncertainty bands are obtained by

varying µF and µR around the central scale µcent = Q. The dashed magenta line indicates

the physical W boson mass, Q = mW .

virtual photon production in ref. [10], hinting once more towards a universality of the

QCD corrections to these processes.

Figure 4: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q/2. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 4 shows the scale variation of the cross section with a di↵erent choice for the

central scale, µcent = Q/2. It is known that for Higgs production a smaller choice of the

factorisation scale leads to an improved convergence pattern and the bands from scale

variations are strictly contained in one another. We observe here that the two scale choices

share the same qualitative features.

The fact that the scale variation bands do not overlap puts some doubt on whether

it gives a reliable estimate of the missing higher orders in perturbation theory, or whether

other approaches should be explored (cf., e.g., refs. [85, 86]). In ref. [10] it was noted that

for virtual photon production there is a particularly large cancellation between di↵erent

initial state configurations. We observe here the same in the case of W boson production.

This cancellation may contribute to the particularly small NNLO corrections and scale

variation bands, and it may be a consequence of the somewhat arbitrary split of the content

– 7 –

[Duhr, Dulat, Mistlberger ‘20] 

๏ choice of the central scale

‣ fastest apparent convergence (FAC) 
      

‣ principle of minimal sensitivity (PMS) 

      

‣ BLM/PMC

‣ …

๏ crucially:  no probabilistic interpretation!  
    can we do better?

↪ Σ(n)(μFAC) = 0

↪ ∂
∂μ Σ(n)(μ)

μPMS

= 0

⇝

[Brodsky, Lepage, Mackenzie ’83]; [Brodsky, Di Giustino ‘12] 



๏ Sequence of perturbative corrections  normalised w.r.t. LO  (dimensionless) 

๏ Probability distribution for   , given  

δk

δn+1 δn = (δ0, δ1, …, δn)

5

PROBABILITY DISTRIBUTIONS FOR ΔMHO [Cacciari, Houdeau ’11] 

Σn = Σ(0) (1 + δ1 + … + δn)

P(δn+1 |δn) =
P(δn+1)
P(δn)

=
∫ dmp P(δn+1 | p) P0(p)
∫ dmp P(δn | p) P0(p)

Model:   
 

Priors:  

P(δn | p)
⊕

P0(p)

Hidden  
parameters 

p

Known orders:  δn

Unknown orders: 
P(δn+1 |δn)

Bayes:  P(p |δk) ∝ P(δk | p) P0(p)

 P(A, B) = P(A |B) P(B)

P(A) = ∫ dB P(A, B)

  ⇝ δk = 𝒪(αk
s )



THE CH MODEL

๏ perturbative expansion  bounded by a geometric series:   

‣ one hidden parameter:  

‣ constrain upper bound   from known orders 
    constraint on unknown coefficients 

๏ limitations:

‣  at what scale? why not:  ,  ,  ,  , … ?

๏ why not let the model figure out the expansion parameter itself?

δk = ck αk
s |ck | ≤ c̄ ∀k

c̄

c̄
⇝ cn+1

αs
αs

π
αs

2π
αs ln2(v) αs ln(v)

6

[Cacciari, Houdeau ’11] 

∑
k

δk ≤ ∑
k

|ck |αk
s ≤ ∑

k

c̄ αk
s

 
  survey of observables 

  fitting 

ck ∼ ηk

↪

↪
[Bagnaschi, Cacciari, Guffanti, Jenniches '14]

[Forte, Isgro, Vita '13]



THE GEOMETRIC MODEL

๏ bounded by a geometric series with expansion parameter : 

๏ model: 

๏ priors:       

a

P0(a, c) = P0(a) P0(c)

7

[Bonvini ‘20] 

|δk | ≤ c ak ∀k

P(k)
geo(δk |a, c) =

1
2c ak

Θ(c −
|δk |
ak )

P0(a) = (1 + ω) (1 − a)ω Θ(a) Θ(1 − a)
1

2

3

0 0.5 1

� = 0
� = 1
� = 2

P0(c) =
ε

c1+ε
Θ(c − 1)

  two model parameters:  ,  ↭ a c

    ( : regulator) ↭ dc/c ∼ d ln(c) ε

δk

P(k)
geo(δk |a, c)

−cak +cak
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THE INFERENCE STEP  —  GEOMETRIC SERIES: δk = (0.7)k

P(δ1) = ∫ da∫ dc P(1)
geo(δ1 |a, c) P0(a, c)

๏ LO     > δ0 ≡ 1
P0(a, c) = Θ(a) Θ(1 − a) P0(c)
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n = 0

no inference yet!  
 entirely determined  

by the model & priors
P(δ1)

P(a)

chose  for 
flat prior in 

ω = 0
a

very broad distribution
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P(δ2 |δ1) = ∫ da∫ dc P(δ2 |δ1, a, c) P(a, c |δ1)

๏ LO     > 

๏ NLO  > 

δ0 ≡ 1

δ1 = 0.7

P(a, c |δ1) ∝ P(1)
geo(δ1 |a, c) P0(a, c)

∝ ∫ da∫ dc P(2)
geo(δ2 |a, c) P(1)

geo(δ1 |a, c) P0(a, c)

1

0 0.5 1
1

0 0.5 1

P0(a, c) = Θ(a) Θ(1 − a) P0(c) P(a)
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n = 0
n = 1

posterior likelihood prior⏟ ⏟ ⏟
Bayes’ theorem: 

P(A |B) =
P(B |A) P(A)

P(B)
 independent:  δk

P(δ2 |δ1) = P(δ2)

THE INFERENCE STEP  —  GEOMETRIC SERIES: δk = (0.7)k
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P(δ3 |δ1, δ2) ∝ ∫ da∫ dc
3

∏
k=1

[P(k)
geo(δk |a, c)] P0(a, c)

๏ LO     > 

๏ NLO  > 

๏ N2LO > 

δ0 ≡ 1

δ1 = 0.7

δ2 = 0.72

P(a, c |δ1) ∝ P(1)
geo(δ1 |a, c) P0(a, c)

P(a, c |δ1, δ2) ∝ P(δ2 |δ1, a, c) P(a, c |δ1)

∝ P(2)
geo(δ2 |a, c) P(1)

geo(δ1 |a, c) P0(a, c)

1
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n = 2

Bayes’ theorem   
&  independence

 
also: 

a ∼ 0.7
c ∼ 1

localised

THE INFERENCE STEP  —  GEOMETRIC SERIES: δk = (0.7)k
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๏ LO     > 

๏ NLO  > 

๏ N2LO > 

๏ …

δ0 ≡ 1

δ1 = 0.7

δ2 = 0.72

P(a, c |δ1) ∝ P(1)
geo(δ1 |a, c) P0(a, c)

P(a, c |δ1, δ2) ∝ P(δ2 |δ1, a, c) P(a, c |δ1)

∝ P(2)
geo(δ2 |a, c) P(1)

geo(δ1 |a, c) P0(a, c)

P0(a, c) = Θ(a) Θ(1 − a) P0(c)

P(δn+1 |δn) ∝ ∫ da∫ dc
n

∏
k=1

[P(k)
geo(δk |a, c)] P0(a, c)

THE INFERENCE STEP  —  GEOMETRIC SERIES: δk = (0.7)k

can be solved analytically



THE  MODEL  —  ASYMMETRIC GEOMETRIC MODELabc

๏ geometric model is symmetric:      

๏ allow for different  lower & upper  bound:

๏ model: 

๏ priors:       

P(δ0, …, δn) = P( |δ0 | , …, |δn | ) ⇝ ⟨δn+1⟩geo = 0

P0(a, b, c) = P0(a) P0(b, c)

12

[Duhr, AH, Mazeliauskas, Szafron ‘21] 

b − c ≤
δk

ak
≤ b + c ∀k

P(k)
abc(δk |a, b, c) =

1
2c |a |k

Θ(c −
δk

ak
− b )

P0(a) = 1
2 (1 + ω) (1 − |a | )ω Θ(1 − |a | )

P0(b, c) =
εηε

c1+ε
Θ(c − η)

1
2ξc

Θ(ξc − b)

  three model parameters:  ,  ,  ↭ a b c

δk

P(k)
abc(δk |a, b, c)

(b − c)ak (b + c)ak

bias/offset

  support:  [ , ]  (alternating ✔) ↭ −1 +1



A REAL-WORLD EXAMPLE  —    (OS  )mt ↭ MS

๏ estimate for  
‣

‣

mt − (mt)4

CI68 = [0.008, 0.046] GeV

CI95 = [−0.027, 0.112] GeV
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Figure 8. Top left panel: the probability distribution from the abc-model for the on-shell top
quark mass (mt)est

n+1 evaluated at µR = mt and for different values of n. Top right panel: the same
distributions normalised to the exact Nn+1LO correction. Bottom left panel: the median (plus),
68% CI (errorbox) and 95% CI (errorbar) for the posterior of (mt)est

n+1, computed from the abc
(blue) and geometric (red) models using information on the previous orders. The exact values of
(mt)n are shown as black circles. Bottom right panel: CIs scaled to the exact Nn+1LO correction.

For heavy quarks it is possible to perturbatively compute these renormalisation factors.
They can be used to define the scheme-conversion factor between the two schemes,

zm(µR) = ZOS
m

ZMS
m (µR)

= m(µR)
m

=
∞∑

k=0

(
αs(µR)

π

)k

z(k)
m (µR) . (4.8)

For heavy quarks zm(µR) is currently known up to four loops [76–78]. We can express the
on-shell mass as a series calculated in perturbative QFT

m = z−1
m (µR)m(µR) =

∞∑

k=0
m(k). (4.9)

In practice, one does not consider arbitrary µR but rather work with a self-consistent
definition of the m mass m(m). Thus for the quark masses we consider the scale as fixed
number rather than as a free parameter.

In figure 8 we show the probability distributions and CIs of the on-shell top quark mass
(mt)est

n+1 = ∑n+1
k=0 m(k) given the first n + 1 perturbative orders of the scheme-conversion

factor zk
mt

(µR) evaluated at µR = mt. In the top left panel we see that the distributions

– 26 –
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Figure 8. Top left panel: the probability distribution from the abc-model for the on-shell top
quark mass (mt)est

n+1 evaluated at µR = mt and for different values of n. Top right panel: the same
distributions normalised to the exact Nn+1LO correction. Bottom left panel: the median (plus),
68% CI (errorbox) and 95% CI (errorbar) for the posterior of (mt)est

n+1, computed from the abc
(blue) and geometric (red) models using information on the previous orders. The exact values of
(mt)n are shown as black circles. Bottom right panel: CIs scaled to the exact Nn+1LO correction.

For heavy quarks it is possible to perturbatively compute these renormalisation factors.
They can be used to define the scheme-conversion factor between the two schemes,

zm(µR) = ZOS
m

ZMS
m (µR)

= m(µR)
m

=
∞∑

k=0

(
αs(µR)

π

)k

z(k)
m (µR) . (4.8)

For heavy quarks zm(µR) is currently known up to four loops [76–78]. We can express the
on-shell mass as a series calculated in perturbative QFT

m = z−1
m (µR)m(µR) =

∞∑

k=0
m(k). (4.9)

In practice, one does not consider arbitrary µR but rather work with a self-consistent
definition of the m mass m(m). Thus for the quark masses we consider the scale as fixed
number rather than as a free parameter.

In figure 8 we show the probability distributions and CIs of the on-shell top quark mass
(mt)est

n+1 = ∑n+1
k=0 m(k) given the first n + 1 perturbative orders of the scheme-conversion

factor zk
mt

(µR) evaluated at µR = mt. In the top left panel we see that the distributions
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mt =
ZOS

m

ZMS
m (μR)

mt(μR)

= ∑
k

m(k)
t

strongly peaked  n ↗

positive corrections 
anticipated

⏟
⏟

CI68 CI95



WHAT TO DO WITH THE THE SCALE ?μ

๏     

‣

๏ geo 

‣ always entered around NNLO 

‣ very narrow peak

๏  

‣     anticipate pos. N3LO 

‣     bias slowly disappears

∀μ ⇝ P(δ3 |δ0, δ1, δ2; μ)

CI68/95

abc

μ/μ0 ≳ 1 ⇝

μ/μ0 ≲ 1 ⇝
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WHAT TO DO WITH THE THE SCALE ?μ

15

Fastest Apparent Convergence 
Σn(μFAC) = Σn−1(μFAC)

μ(2)
FAC μ(3)

FAC

depends on order 
might not be unique

๏     

‣

๏ two options:

1. invoke some principle to  
pick the “optimal” scale

‣ FAC, PMS, PMC, …

∀μ ⇝ P(δ3 |δ0, δ1, δ2; μ)

CI68/95 (geo)        (abc)
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WHAT TO DO WITH THE THE SCALE ?μ

15

Principle of Minimal Sensitivity 
  ∂

∂μ Σn(μ) |μPMS
= 0

μ(2)
PMS μ(3)

PMS

depends on order 
might not be unique

๏     

‣

๏ two options:

1. invoke some principle to  
pick the “optimal” scale

‣ FAC, PMS, PMC, …

∀μ ⇝ P(δ3 |δ0, δ1, δ2; μ)

CI68/95 (geo)        (abc)
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WHAT TO DO WITH THE THE SCALE ?μ

๏     

‣

๏ two options:

1. invoke some principle to  
pick the “optimal” scale

‣ FAC, PMS, PMC, …

2. combine different  

∀μ ⇝ P(δ3 |δ0, δ1, δ2; μ)

CI68/95

P(δn+1 |δn; μ)
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PRESCRIPTIONS FOR SCALES 
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Scale Marginalisation (sm): 

๏ treat  as a hidden model parameter 
  &  marginalise over it:

๏   with prior:

μ

P(μ |δn) ∝ P(δn; μ) P0(μ)

Scale Average  (sa): 

๏  has no probabilistic interpretation 
    average over it:

๏ weight function:

μ
⇝

Psm(δn+1 |δn) = ∫ dμ P(δn+1, μ |δn)

= ∫ dμ P(δn+1 |δn; μ) P(μ |δn)

P0(μ) = 1
2μ ln F

Θ(ln F − ln( μ
μ0

) ) w(μ) = 1
2μ ln F

Θ(ln F − ln( μ
μ0

) )

Psa(δn+1 |δn) = ∫ dμ w(μ) P(δn+1 |δn; μ)

ln μ

μ0/F F μ0μ0μ =

[Duhr, AH, Mazeliauskas, Szafron ‘21] [Bonvini ‘20] 



PEAK OF THE DISTRIBUTIONS*
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Scale Marginalisation (sm): 

๏ if    then 
  peaks at 

‣   dominated by ( ) term

‣ symmetric model 
      enhanced 

μFAC ∈ [μ0/F, F μ0]
Psm(δn+1 |δn) Σn(μFAC)

P(δn |μ) k = n

⇝ δn(μ) = 0

Scale Average  (sa): 

๏ if    then 
  peaks at 

‣ overlap between   
enhanced at stationary point 
     

μPMS ∈ [μ0/F, F μ0]
Psa(δn+1 |δn) Σn(μPMS)

P(δn+1 |δn; μ)

⇝ Σ′ n(μPMS) ≈ 0

* for symmetric models, a convergent series, and reasonable assumptions

Choice of how to interpret the scale 
has consequences for predictions!

[Duhr, AH, Mazeliauskas, Szafron ‘21] 



INCLUSIVE CROSS SECTIONS UP TO N3LO
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Figure 16. The 68% and 95% CIs for the VBF cross-sections for Higgs and di-Higgs production
for the geometric and abc-models using the sa- and sm-prescriptions. The scale variation intervals
using 7 and 9 points are shown for comparison.

As before the centre-of-mass energy is √
s = 13 TeV. The central scale is given by the vector

boson momentum [123] and we take into account the dependence on both factorisation and
renormalisation scales. Computations were performed with the proVBFH code [124].

In the left panel of figure 16 we display the CIs for different models and prescriptions for
single Higgs VBF production. For n < 2 the Bayesian approach gives a larger uncertainty
(68% CIs) than the traditional scale variation. Because the NLO correction is negative,
the abc-model anticipates an alternating series, and consequently the CIs for n = 1 for
the abc-model are positively shifted compared to the NLO result. However, the NNLO
corrections are again negative, and for n = 2 all studied models and prescriptions give
very similar 68% CIs, although the abc-model has much larger 95% CIs than the geometric
model. For n = 3 the 68% CIs shrink even further and become somewhat smaller than the
scale variation intervals. For the single Higgs VBF cross-section (σVBF-H)n at n = 3 these
CIs are:

model prescription CI68 (fb) CI95 (fb) 7 point (fb) 9 point (fb)
abc sa [3.9306, 3.9357] [3.9287, 3.9478]

[3.9304, 3.9367] [3.9304, 3.9367]abc sm [3.9304, 3.9337] [3.9290, 3.9430]
geo sa [3.9305, 3.9343] [3.9287, 3.9385]
geo sm [3.9304, 3.9324] [3.9293, 3.9355]

We note that the sm-prescription gives much smaller CIs than the sa-prescription. In fact,
the 95% CIs of the scale-marginalised geometric model is smaller and does not contain
the scale-variation interval, demonstrating that the bounds discussed in section 2.3 do not
necessarily apply to the sm-prescription. In contrast the 95% CIs for the geometric model
in sa-prescription contain the scale variation intervals, as expected.

In the right panel of figure 16 we display the CIs for different models and prescriptions
for di-Higgs VBF production. We observe very good convergence of the cross-section, and
correspondingly the CIs from Bayesian inference shrink rapidly. We observe that the sa-
prescription gives larger CIs than the sm-prescription, which is due to the presence of an
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Figure 17. The 68% and 95% CIs for the neutral-current Drell-Yan cross-section and charged-
current lepton-charge asymmetry for the geometric and abc-models using the sa- and sm-
prescriptions. The scale variation intervals using 7 and 9 points are shown for comparison.

conventional 7-point scale variation at n = 2 [127]. The CIs for the neutral-current Drell
Yan cross-section (σDY-NC)n at n = 3 are:

model prescription CI68 (nb) CI95 (nb) 7 point(nb) 9 point (nb)
abc sa [45.6, 46.6] [44.8, 49.0]

[45.6, 46.4] [45.5, 46.4]abc sm [45.9, 46.5] [45.1, 48.3]
geo sa [45.5, 46.4] [44.6, 47.2]
geo sm [45.8, 46.3] [45.0, 46.9]

We observe that the 68% CIs are similar in size among themselves, and to the scale-
variation intervals, but the CIs from the abc-model are slightly shifted upwards in the
anticipation of a positive MHO correction.

In the right panel of figure 17 we show results for the lepton charge asymmetry for
µ0 = Q = mW . The perturbative expansion for AW (m2

W ) is quickly convergent with only
a mild scale dependence, because some corrections cancel in the ratio. The perturbative
coefficients feature a monotonic increase with the perturbative order, and the abc-model
correctly anticipates positive contributions from MHOs. The CIs from the abc-model are
slightly smaller than for the geometric model. We do not observe significant differences
between the sm- and sa-prescriptions, except for n = 3, where scale-marginalisation gives
more aggressive CIs. We note that the traditional 7-point scale variation intervals for
n = 0, 1 fail to include the next correction, but for n = 2 they are similar to the 68% CIs
obtained from Bayesian inference. The results for the CIs for AW (m2

W ) at N3LO are:

model prescription CI68 CI95 7 point 9 point
abc sa [0.1489, 0.1494] [0.1486, 0.1497]

[0.1488, 0.1493] [0.1485, 0.1494]abc sm [0.1491, 0.1494] [0.1488, 0.1497]
geo sa [0.1487, 0.1493] [0.1484, 0.1495]
geo sm [0.1490, 0.1494] [0.1485, 0.1495]
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Figure 17. The 68% and 95% CIs for the neutral-current Drell-Yan cross-section and charged-
current lepton-charge asymmetry for the geometric and abc-models using the sa- and sm-
prescriptions. The scale variation intervals using 7 and 9 points are shown for comparison.

conventional 7-point scale variation at n = 2 [127]. The CIs for the neutral-current Drell
Yan cross-section (σDY-NC)n at n = 3 are:

model prescription CI68 (nb) CI95 (nb) 7 point(nb) 9 point (nb)
abc sa [45.6, 46.6] [44.8, 49.0]

[45.6, 46.4] [45.5, 46.4]abc sm [45.9, 46.5] [45.1, 48.3]
geo sa [45.5, 46.4] [44.6, 47.2]
geo sm [45.8, 46.3] [45.0, 46.9]

We observe that the 68% CIs are similar in size among themselves, and to the scale-
variation intervals, but the CIs from the abc-model are slightly shifted upwards in the
anticipation of a positive MHO correction.

In the right panel of figure 17 we show results for the lepton charge asymmetry for
µ0 = Q = mW . The perturbative expansion for AW (m2

W ) is quickly convergent with only
a mild scale dependence, because some corrections cancel in the ratio. The perturbative
coefficients feature a monotonic increase with the perturbative order, and the abc-model
correctly anticipates positive contributions from MHOs. The CIs from the abc-model are
slightly smaller than for the geometric model. We do not observe significant differences
between the sm- and sa-prescriptions, except for n = 3, where scale-marginalisation gives
more aggressive CIs. We note that the traditional 7-point scale variation intervals for
n = 0, 1 fail to include the next correction, but for n = 2 they are similar to the 68% CIs
obtained from Bayesian inference. The results for the CIs for AW (m2

W ) at N3LO are:

model prescription CI68 CI95 7 point 9 point
abc sa [0.1489, 0.1494] [0.1486, 0.1497]

[0.1488, 0.1493] [0.1485, 0.1494]abc sm [0.1491, 0.1494] [0.1488, 0.1497]
geo sa [0.1487, 0.1493] [0.1484, 0.1495]
geo sm [0.1490, 0.1494] [0.1485, 0.1495]
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VBF—H DY—NC AW = W+ − W−

W+ + W−

๏ :   bigger than 9pt

๏      alternating

๏ :  all prescriptions similar

n < 2 CI68

δ1 < 0 ⇝ abc

n > 2

๏  is large and outside of 9pt!

๏ similar unc.:  sa    9pt

๏ :  sm   others  ( ) 

๏ :  all prescriptions similar

δ3

≃

n = 2 ≪ μFAC

n = 3

๏ large cancellations in the ratio

๏ :  9pt performs poorly

๏    (anticipated by ) 

๏ size:      others

n < 2

(AW)n ↗ abc

abc ≲

overall: not radically different estimates for    ΔMHO (n ≥ 2)



DIFFERENTIAL DISTRIBUTIONS

๏ Bayesian approach also applicable to distributions 
    treat each bin individually    will not include correlations! 

๏ new challenges

‣ no longer “easy” to identify an appropriate hard scale   (up to rescaling)  
    inclusive ggH:    vs.   ?  Just let the model figure it out.

‣ differential distributions can probe different kinematic regimes 
    dynamical scale choice    many choices!  
    e.g. in jet production:   ,   ,   ,  ,  , …

‣ re-cycling via quadrature limited    ideally interpolation grids 

⇝ ↭

μ0
⇝ MH

1
2 MH

⇝ ↭
⇝ pj

T pj1
T ⟨pj

T⟩avg HT ≡ ∑
i∈jets

pi
T ĤT ≡ ∑

i∈partons

pi
T

⇝
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๏ example where 9pt fails

‣ large corrections

‣

‣ no sign of convergence

๏ :  

‣    2-3    9pt

๏ :  

‣ marginal overlap for  geo

‣ differences in size & position 

‣ ideally N3LO for robust 

๏ sm    sa

‣ large corrections  
prohibit FAC points
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:  infrared sensitivity μ0 = pj
T :  recommendationμ0 = ĤT
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�0 = Ĥ T p p � jet(s) �s� = 13 TeV

geo sa CI68

pT,j (GeV) 

0.8
0.9
1.0
1.1
1.2
1.3
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[Currie et al. ‘18] 
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?
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:  infrared sensitivity μ0 = pj
T :  recommendationμ0 = ĤT [Currie et al. ‘18] 
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positive 

corrections
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non-trivial change of dynamical scales 
cannot be captured by a simple re-scaling



WORK IN PROGRESS  —  CORRELATIONS

๏ idea:  if two bins show similar (opposite) perturbative behaviour 
  two bins should be partially (anti-)correlated.

๏ we want:  joint probability distribution  for two bins  &  
  preserve projections for compatibility: 

 
 
 

  hidden parameter    to smoothly implement the correlation

๏ possibilities:  algorithmic “earth movers distance”;  map  onto , … 
  can be done much simpler 

      

↪

P(x, y) x y
↪

↪ −1 < c < + 1

P(x) P(y)
↪

25

P(x) = ∫ dy P(x, y) = ∫ dz P(x, z)

[AH, Mazeliauskas w.i.p] 



WORK IN PROGRESS  —  CORRELATION MODEL IN miho

๏ projections of multi-dim. Gaussians (+ correlation matrix) are again Gaussian 
  map  onto Gaussians, implement correlations, map back↪ Pi

26

× = ⇝
c = − 0.5 c = 0 c = 0.9

use inference to constrain c

[AH, Mazeliauskas w.i.p] 



CONCLUSIONS & OUTLOOK

๏ Bayesian inference is a powerful framework to estimate 

‣ probabilistic interpretation     

‣ exposes our assumptions & biases clearly    model & priors 

‣ but:  it is not more reliable than scale variation    careful analysis required 

๏ typically for  :    9pt ;   :    9pt 

๏ public code:  ミホ (miho)      https:!"github.com/aykhuss/miho

๏ future directions

‣ correlations  ( ,   vs. ,  PDF fits & data interpretation, …) 

‣ marginalisation over models,  … 

ΔMHO

↭ P(δn+1 |δn)

↭

⇝

n < 2 CI68 > n ≥ 2 CI68 ≃

⇝

pW
T /pZ

T pZ
T pℓ

T

27

relying on a single 
prescription for TH unc. in 
precision measurements 
that does not admit a 

probabilistic interpretation 
is potentially dangerous!

[AH, Mazeliauskas w.i.p] 



CONCLUSIONS & OUTLOOK

๏ Bayesian inference is a powerful framework to estimate 

‣ probabilistic interpretation     

‣ exposes our assumptions & biases clearly    model & priors 

‣ but:  it is not more reliable than scale variation    careful analysis required 

๏ typically for  :    9pt ;   :    9pt 

๏ public code:  ミホ (miho)      https:!"github.com/aykhuss/miho
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‣ correlations  ( ,   vs. ,  PDF fits & data interpretation, …) 
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Thank you!

relying on a single 
prescription for TH unc. in 
precision measurements 
that does not admit a 

probabilistic interpretation 
is potentially dangerous!

[AH, Mazeliauskas w.i.p] 
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TOY EXAMPLE  —  δk = (0.7)k
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๏ Confidence Intervals 
     
containing  of the probability

CIx = [Σlow
x , Σupp
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Figure 3. Top left panel: the probability distribution from the abc-model for Sest
n+1 for different

values of n for the geometric series with x = 0.7. Top right panel: the same as the left panel, but we
show the probability for the scaled deviation from the known correction (Sest

n+1 −Sn+1)/|Sn+1 −Sn|.
Bottom left panel: the median (plus), 68% CI (errorbox) and 95% CI (errorbar) for the posterior of
Sest

n+1, computed from the abc (blue) and geometric (red) models using information on the previous
orders. The exact values of Sn are shown as black circles. Bottom right panel: the same as the left
panel, but the exact Sn value is subtracted from Sest

n+1 and the difference is normalised by |Sn+1−Sn|.

distribution Pabc(δn) analytically in terms of Gauss’ hypergeometric function, allowing for
a fast and efficient numerical implementation of the model.

In the top left panel of figure 3 we show the probability distributions for the partial
sums Sn := ∑n

k=0 δk = ∑n
k=0 xk for x = 0.7 and n ≤ 7 using the abc-model with parameter

values (ε, ω, ξ, η) = (0.1, 1, 2, 0.1) (see the discussion below for the choice of these values).
For n = 0, the probability distribution is symmetric and centred around S0 = 1. For
n > 0 the distributions are clearly not symmetric and become more and more peaked
as n increases. In the top right panel we show the probability distributions for the scaled
deviation from the known correction (Sest

n+1−Sn+1)/|Sn+1−Sn| = (δest
n+1−δn+1)/|δn+1|. This

allows us to compare different orders without the suppression of the expansion parameter.
In this plot the Sn+1 value corresponds to zero on the x-axis, while Sn corresponds to ±1
(depending on the sign of δn+1). Again, for n = 0 the distribution is centred around the
initial value S0, but for each subsequent order, the distribution shifts towards the true value.
We note that the shape of the distribution does not change significantly beyond n = 3,
so that the narrowness of the distributions in the left panel is solely due to the higher
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Figure 3. Top left panel: the probability distribution from the abc-model for Sest
n+1 for different

values of n for the geometric series with x = 0.7. Top right panel: the same as the left panel, but we
show the probability for the scaled deviation from the known correction (Sest

n+1 −Sn+1)/|Sn+1 −Sn|.
Bottom left panel: the median (plus), 68% CI (errorbox) and 95% CI (errorbar) for the posterior of
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n+1, computed from the abc (blue) and geometric (red) models using information on the previous
orders. The exact values of Sn are shown as black circles. Bottom right panel: the same as the left
panel, but the exact Sn value is subtracted from Sest

n+1 and the difference is normalised by |Sn+1−Sn|.

distribution Pabc(δn) analytically in terms of Gauss’ hypergeometric function, allowing for
a fast and efficient numerical implementation of the model.

In the top left panel of figure 3 we show the probability distributions for the partial
sums Sn := ∑n

k=0 δk = ∑n
k=0 xk for x = 0.7 and n ≤ 7 using the abc-model with parameter

values (ε, ω, ξ, η) = (0.1, 1, 2, 0.1) (see the discussion below for the choice of these values).
For n = 0, the probability distribution is symmetric and centred around S0 = 1. For
n > 0 the distributions are clearly not symmetric and become more and more peaked
as n increases. In the top right panel we show the probability distributions for the scaled
deviation from the known correction (Sest

n+1−Sn+1)/|Sn+1−Sn| = (δest
n+1−δn+1)/|δn+1|. This

allows us to compare different orders without the suppression of the expansion parameter.
In this plot the Sn+1 value corresponds to zero on the x-axis, while Sn corresponds to ±1
(depending on the sign of δn+1). Again, for n = 0 the distribution is centred around the
initial value S0, but for each subsequent order, the distribution shifts towards the true value.
We note that the shape of the distribution does not change significantly beyond n = 3,
so that the narrowness of the distributions in the left panel is solely due to the higher
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Figure 4. The dependence of the probability distribution 1/S0Pabc((Sest
n+1 − Sn)/S0|δn) for geo-

metric series for n = 1 (dashed) and n = 3 (solid) on the parameters (ε, ω, η, ξ) for 4 selected values,
with the others held fixed at (ε, ω, η, ξ) = (0.1, 1, 0.1, 2).

4 Quantities without explicit scale dependence

The goal of this section and the next is to illustrate the concepts and models from the
previous sections on various examples of observables in QFT. We start by investigating
several quantities whose perturbative expansion does not have an explicit dependence on
the perturbative scales, or for which scale dependence is not relevant. This allows us to
illustrate the application of the abc-model to genuine perturbative expansions from QFT.
The sequence δn is the sequence of the n+1 first perturbative coefficients, normalised such
that δ0 = 1

δk := Σ(k)/Σ0 . (4.1)

The rescaling introduces a Jacobian into eq. (2.8), which now takes the form

P (Σ|Σn) ≈ 1
Σ0

Pabc

(
Σ
Σ0

−
n∑

k=0
δk

∣∣∣δn

)

. (4.2)

We then use this probability distribution to compute CIs for Σ within the abc-model
using perturbative input through NnLO. These intervals estimate the size of the missing
Nn+1LO terms, and so they serve as measures of the MHO uncertainty at NnLO. To assess
the validity of this procedure, we show in each case how the size of the CIs computed at
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A REAL-WORLD EXAMPLE  —  CUSP ANOMALOUS DIMENSION IN QCD

๏ estimate for  
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Figure 7. Top left panel: the probability distribution from the abc-model for the QCD cusp
anomalous dimension (ΓQCD

cusp )est
n+1 evaluated with αs(µR = 5 GeV) ≈ 0.213 and for different values of

n. Top right panel: the same distributions normalized to the exact Nn+1LO correction. Bottom left
panel: the median (plus), 68% CI (errorbox) and 95% CI (errorbar) for the posterior of (ΓQCD

cusp )est
n+1,

computed from the abc (blue) and geometric (red) models using information on the previous orders.
The exact values of (ΓQCD

cusp )n are shown as black circles. Bottom right panel: CIs scaled to the exact
Nn+1LO correction.

i.e., Σ = ΓQCD
cusp − (ΓQCD

cusp )4, is

CI68 = CF

(
αs(µR)

π

)5
[2.1, 9.5], CI95 = CF

(
αs(µR)

π

)5
[−0.38, 21], (4.6)

where we scaled out CF

(
αs(µR)

π

)5
for visibility. We see that the abc-model at 68% credibil-

ity level would expect a positive higher-order correction. In contrast, the geometric model
estimates a symmetric interval CI68 = [−5.4, 5.4] with the same normalisation.

4.2 On-shell and MS-scheme quark masses

Our next example is the relation between the heavy quark mass m in the on-shell scheme
and the mass m in the MS-scheme. The bare mass m0 is related to the on-shell and MS
quark masses via the renormalisation factors Zm

m0 = ZMS
m (µR) m(µR) = ZOS

m m . (4.7)
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Figure 7. Top left panel: the probability distribution from the abc-model for the QCD cusp
anomalous dimension (ΓQCD

cusp )est
n+1 evaluated with αs(µR = 5 GeV) ≈ 0.213 and for different values of

n. Top right panel: the same distributions normalized to the exact Nn+1LO correction. Bottom left
panel: the median (plus), 68% CI (errorbox) and 95% CI (errorbar) for the posterior of (ΓQCD

cusp )est
n+1,

computed from the abc (blue) and geometric (red) models using information on the previous orders.
The exact values of (ΓQCD

cusp )n are shown as black circles. Bottom right panel: CIs scaled to the exact
Nn+1LO correction.
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for visibility. We see that the abc-model at 68% credibil-

ity level would expect a positive higher-order correction. In contrast, the geometric model
estimates a symmetric interval CI68 = [−5.4, 5.4] with the same normalisation.

4.2 On-shell and MS-scheme quark masses

Our next example is the relation between the heavy quark mass m in the on-shell scheme
and the mass m in the MS-scheme. The bare mass m0 is related to the on-shell and MS
quark masses via the renormalisation factors Zm

m0 = ZMS
m (µR) m(µR) = ZOS
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The exact values of (ΓQCD

cusp )n are shown as black circles. Bottom right panel: CIs scaled to the exact
Nn+1LO correction.
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for visibility. We see that the abc-model at 68% credibil-

ity level would expect a positive higher-order correction. In contrast, the geometric model
estimates a symmetric interval CI68 = [−5.4, 5.4] with the same normalisation.

4.2 On-shell and MS-scheme quark masses

Our next example is the relation between the heavy quark mass m in the on-shell scheme
and the mass m in the MS-scheme. The bare mass m0 is related to the on-shell and MS
quark masses via the renormalisation factors Zm

m0 = ZMS
m (µR) m(µR) = ZOS
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Figure 14. Left: the dependence of the CIs on the size F of the scale interval (µ0/F ≤ µ ≤ Fµ0)
for gluon-fusion Higgs cross-section for the geometric and abc-models using the sm-prescription
Right: the same plot using the sa-prescription.

5.1.1 Sensitivity to the scale interval and scale prescription

We begin by analysing the dependence of our sm- and sa-prescriptions on the range F that
is chosen in eqs. (2.9) and (2.13), i.e., µ0/F ≤ µ ≤ Fµ0.

Figure 14 shows the CIs for the values F = 2, 4, 10 using the geometric and abc-
models. The left and right panels summarise the results from the sm- and sa-prescriptions
respectively. For n = 2 the sm-prescription exhibits a somewhat smaller dependence on
the choice of F , while the CIs for the sa-prescription grow with F . This can be understood
from the discussion in section 2.2: for symmetric models like the geometric model, the sm-
prescription tries to adapt to the point where the higher-order corrections are minimised,
i.e., the FAC point. Once this point is covered by the range in the marginalisation, a
further increase does not have a substantial impact on the uncertainties. From figure 13
we see that this is precisely what happens for the geometric model for n = 2, when F is
increased from 2 to 4, and even for F = 10 the CIs change only very little. The discussion
of section 2.2 does not apply to the abc-model, which is asymmetric. Recall from figure 13
that the abc-model does not have such dramatic reduction in the size of the CIs when
reaching an FAC point. Therefore it is also less biased to the inclusion of FAC point into
the integration range for µ in the sm-prescription. For n = 3 the second FAC point at very
small scales becomes relevant only for the largest F values.

The sa-prescription, on the other hand, is biased to the regions where the scale depen-
dence is flat, i.e., it is biased towards the PMS point. However, for this particular process
we observe the peculiar situation that FAC and PMS points are very close to each other
(at least for the orders we considered). Due to the coherent addition of probabilities, for
the sa-prescription increasing the range of the µ-integration inevitably will also increase
the CIs.

Let us conclude this discussion with an important point. From a Bayesian perspective,
one expects that the predictions of the model become independent of the priors once enough
data have become available. In particular, in the sm-prescription, the perturbative scales
are treated as model parameters, and so one expects that at high enough orders the model
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๏ the integration over  is in general very costly  (numerical)  
    approximate it using quadrature rule    (works well for )  
    recycle existing calculations done for   

๏ Gauss-Legendre  (  ;  )        corresponds to  

μ
⇝ CI68/95
⇝ {μ0/2, 2 μ0}

w0 = 8
18 w±1 = 5

18 ⇝ F ≃ 2.45

∫ dμ w(μ) f(μ) ≃ w−1 f(μ0/2) + w0 f(μ0) + w+1 f(2μ0)
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Figure 15. Left: the coloured lines show the probability distributions for the abc-model at different
orders using the sa-prescription and the 3-point Gauss-Legendre quadrature on µF /µ0, µR/µ0 ∈
{1/2, 1, 2}. The black dashed line indicates the “exact” numerical integration in the interval with
F = 2.45. Right: the CIs for the geometric and abc models at different orders using the sm- and
sa-prescriptions using the Gauss-Legendre quadrature. The result of the “exact” numerical integral
are overlaid using black dashed lines. For comparison we also include the 9-point and 7-point
variation intervals.

predictions should only mildly depend on the prior in eq. (2.5), and the choice of F , in
agreement with our findings in figure 14. However, it would be premature to conclude
that the probability distributions are independent of the prior and F : we have shown in
section 2.2 that for the geometric model in the sm-prescription, the preferred scale is the
FAC point. The fact that the CIs are insensitive to the choice of F is likely to be related
to the fact that the distributions will be highly peaked at the values of the cross-section at
the FAC point, which is not necessarily related to the prior independence. Note that the
argument of section 2.2 does not apply to the abc-model in the sm-prescription (because
the abc-model is not symmetric).

5.1.2 Accuracy of Gauss-Legendre quadrature rule
As already discussed in section 2.3, performing the numerical integral over the scale can
become computationally expensive. Quadrature rules, on the other hand, allow one to
approximate the full integral using only a small number of input points. In particular, a set
of points for a 9-point scale variation may be readily turned into an integral over (µR, µF ).

The left panel of figure 15 illustrates the accuracy of this approximation for the proba-
bility distributions in the abc-model using the sa-prescription. The distributions for differ-
ent values of n (in colour) are obtained using the 3-point Gauss-Legendre quadrature for
both µR and µF . The results obtained by a finely-spaced equidistant numerical integration
over the same scale interval with F ≈ 2.45 is overlaid on top (black dashed lines). We see
that, except for some features around the peak, the quadrature rules reproduce the “exact”
numerical integration very well. In particular, this approximation has very little effect on
the CIs, which are shown in the right panel of figure 15, where we show the 68% and 95%
CIs for the geometric and abc models using both the sm- and sa-prescriptions. The dashed
black lines indicate the results of the finely-spaced numerical integration. We note that
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