

BAYESIAN ESTIMATES FOR TH UNCERTAINTIES

Discussion of theoretical systematics in LHC precision measurements — February 26th 2024 — CERN

Alexander Huss

What is the Uncertainty Δ_{TH} of my Result?

- increasingly urgent to address with $\Delta_{\text{EXP}} \searrow (\leftrightarrow \text{HL-LHC})$
 - what does 5σ mean if Δ_{TH} non-negligible?
 - interpretation of data in need for robust Δ_{TH} : PDF fits, χ^2 in ATLAS jets, ...
- various sources that contribute to Δ_{TH} :
 - $\Delta_{\alpha_{s'}} \Delta_{\text{param}}$: parametric uncertainties $\leftrightarrow \Rightarrow$ exp. extraction
 - Δ_{PDF} : parton distribution functions (PDFs) $\leftrightarrow \rightarrow$ fits
 - ▶ $\Delta_{\text{non pert.}}$: hadronisation, UE, ... \leftrightarrow parton showers [e.g. HERWIG vs. PYTHIA]
 - Δ_{MHO} : missing higher-order (MHO) corrections

Focus here

Conventional Approach for $\Delta_{\rm MHO}$ – Scale Variation

approximation for an observable @ $(next-to-)^n$ leading order: $\propto \alpha_s^{n_0+k}$

- NⁿLO: $\Sigma \simeq \Sigma_n(\mu) = \sum_{k=1}^{n} \Sigma^{(k)}(\mu)$ k=0
- truncation of series induces a sensitivity to terms of the next order

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \Sigma_n(\mu) = \mathcal{O}(\alpha_s^{n_0 + n + 1}) = \mathcal{O}(\alpha_s^{n_0 + n + 1})$$

electroweak (EW): \hookrightarrow scheme dependence $\hookrightarrow \alpha \ll \alpha_{s}$

ISSUES WITH STANDARD SCALE VARIATIONS

- known to be insufficient:
 - exclusive jet(s) (veto)
 - ratios (correlation?)
 - cancellations (e.g. $q\bar{q}$ vs. qg in DY)

choice of the central scale

- fastest apparent convergence (FAC) $\hookrightarrow \Sigma^{(n)}(\mu_{\text{FAC}}) = 0$
- principle of minimal sensitivity (PMS) $\hookrightarrow \frac{\partial}{\partial \mu} \Sigma^{(n)}(\mu) = 0$
- BLM/PMC

[Brodsky, Lepage, Mackenzie '83]; [Brodsky, Di Giustino '12] . . .

crucially: *no probabilistic interpretation!* \rightarrow can we do better?

PROBABILITY DISTRIBUTIONS FOR
$$\Delta_{\text{MHO}}$$

• Sequence of perturbative corrections δ_{k}
 $\Sigma_{n} = \Sigma^{(0)} (1 + \delta_{1} + ... + \delta_{n}) \quad \Rightarrow \delta_{n}$
• Probability distribution for δ_{n+1} , give
 $P(\delta_{n+1} | \delta_{n}) = \frac{P(\delta_{n+1})}{P(\delta_{n})} = \frac{\int d^{m}p \ P(\delta_{n+1})}{\int d^{m}p \ P(\delta_{n})}$

P(A, B) = P(A | B) P(B) $P(A) = \left| \mathrm{d}B \ P(A, B) \right|$

Model: $P(\boldsymbol{\delta}_n | \boldsymbol{p})$ \bigcirc Priors: $P_0(\mathbf{p})$

[Cacciari, Houdeau '11]

 $_{k}$ normalised w.r.t. LO (dimensionless)

 $\delta_k = \mathcal{O}(\alpha_s^k)$ en $\boldsymbol{\delta}_n = (\delta_0, \delta_1, \dots, \delta_n)$ $(p) P_0(p)$ $(p) P_0(p)$

THE CH MODEL

perturbative expansion $\delta_k = c_k \alpha_s^k$ bounded by a geometric series: $|c_k| \leq \bar{c}$

$$\left|\sum_{k} \delta_{k}\right| \leq \sum_{k} |c_{k}| \alpha_{s}^{k} \leq \sum_{k} \bar{c} \alpha_{s}^{k}$$

- one hidden parameter: \bar{c}
- constrain upper bound \bar{c} from known orders \rightarrow constraint on unknown coefficients C_{n+1}
- limitations:

 α_s at what scale? why not: $\frac{\alpha_s}{\pi}$, $\frac{\alpha_s}{2\pi}$, $\alpha_s \ln^2(v)$, $\alpha_s \ln(v)$, ...? why not let the model figure out the expansion parameter itself?

[Cacciari,	Houdeau '
 	• • • • • • • • • • • • • • •

$\forall k$

 $c_k \sim \eta^k$ \hookrightarrow survey of observables [Bagnaschi, Cacciari, Guffanti, Jenniches '14] \hookrightarrow fitting [Forte, Isgro, Vita '13]

11]

THE GEOMETRIC MODEL bounded by a geometric series with expansion parameter *a*: $|\delta_k| \leq c a^k \quad \forall k \quad \iff \text{two model parameters: } a, c$ **model:** $P_{\text{geo}}^{(k)}(\delta_k | a, c) = \frac{1}{2c a^k} \Theta\left(c - \frac{|\delta_k|}{a^k}\right)$ **priors:** $P_0(a, c) = P_0(a) P_0(c)$ $P_0(a) = (1 + \omega) (1 - a)^{\omega} \Theta(a) \Theta(1 - a)$ $P_0(c) = \frac{\varepsilon}{c^{1+\varepsilon}} \Theta(c-1)$

[Bonvini '20]

 $\leftrightarrow dc/c \sim d\ln(c)$ (ε : regulator)

The Inference Step – Geometric series: $\delta_k = (0.7)^k$

• LO $> \delta_0 \equiv 1$

 $P_0(a,c) = \Theta(a) \ \Theta(1-a) \ P_0(c)$

chose $\omega = 0$ for flat prior in a

> no inference yet! $P(\delta_1)$ entirely determined by the model & priors

$$P(\delta_{1}) = \int da \int dc \ P_{geo}^{(1)}(\delta_{1} | a, c) \ P_{0}(a, c)$$

The Inference Step – Geometric series: $\delta_k = (0.7)^k$

 $> \delta_0 \equiv 1$ $P_0(a,c) = \Theta(a) \ \Theta(1-a) \ P_0(c)$ **NLO** > $\delta_1 = 0.7$ $P(a, c | \delta_1) \propto P_{geo}^{(1)}(\delta_1 | a, c) P_0(a, c)$ • N²LO > $\delta_2 = 0.7^2$ $P(a, c \mid \delta_1, \delta_2) \propto P(\delta_2 \mid \delta_1, a, c) P(a, c \mid \delta_1)$ $\propto P_{geo}^{(2)}(\delta_2 | a, c) P_{geo}^{(1)}(\delta_1 | a, c) P_0(a, c)$

Bayes' theorem & independence

a ~ 0.7 <u>also:</u> *c* ~ 1

The Inference Step – Geometric series: $\delta_k = (0.7)^k$

 $> \delta_0 \equiv 1$ LO $P_0(a,c) = \Theta(a) \ \Theta(1-a) \ P_0(c)$ • NLO > $\delta_1 = 0.7$ $P(a, c | \delta_1) \propto P_{geo}^{(1)}(\delta_1 | a, c) P_0(a, c)$ • N²LO > $\delta_2 = 0.7^2$ $P(a, c \mid \delta_1, \delta_2) \propto P(\delta_2 \mid \delta_1, a, c) P(a, c \mid \delta_1)$ $\propto P_{\text{geo}}^{(2)}(\delta_2 | a, c) P_{\text{geo}}^{(1)}(\delta_1 | a, c) P_0(a, c)$

can be solved analytically

$$P(\delta_{n+1} | \boldsymbol{\delta}_n) \propto \int da \int dc \prod_{k=1}^n \left[P_{\text{geo}}^{(k)}(\delta_k | a, c) \right] P_0(a, b)$$

THE *abc* MODEL – ASYMMETRIC GEOMETRIC MODEL

- allow for different lower & upper bound: $b - c \leq \frac{\delta_k}{a^k} \leq b + c \quad \forall k \quad \iff \text{ three model parameters: } a, b, c$

• model:
$$P_{abc}^{(k)}(\delta_k | a, b, c) = \frac{1}{2c |a|^k} \Theta\left(c - \left|\frac{o_k}{a^k} - b\right|\right)$$

 $(b - c)a^k$ $(b + c)a^k$

• priors:
$$P_0(a, b, c) = P_0(a) P_0(b, c)$$

 $P_0(a) = \frac{1}{2} (1 + \omega) (1 - |a|)^{\omega} (1 + \omega) (1 - |a|)^{\omega} (1 + \omega)$
 $P_0(b, c) = \frac{\varepsilon \eta^{\varepsilon}}{c^{1+\varepsilon}} \Theta(c - \eta) \frac{1}{2\xi c} (1 + \omega)$

 $\Theta(1 - |a|) \iff \text{support: } [-1, +1] \text{ (alternating })$

 $\Theta(\xi c - b)$

• $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ • $CI_{68/95}$ (geo) (abc)

• geo

- always entered around NNLO
- very narrow peak
- abc
 - ▶ $\mu/\mu_0 \gtrsim 1 \implies$ anticipate pos. N3LO
 - $\mu/\mu_0 \lesssim 1 \Rightarrow$ bias slowly disappears

• $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ $\bullet CI_{68/95} \quad (geo) \quad (abc)$

- two options:
 - 1. invoke some *principle* to pick the "optimal" scale
 - FAC, PMS, PMC, ...

Fastest Apparent Convergence $\Sigma_n(\mu_{\text{FAC}}) = \Sigma_{n-1}(\mu_{\text{FAC}})$

depends on order might not be unique

• $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ $\bullet CI_{68/95} \quad (geo) \quad (abc)$

- two options:
 - 1. invoke some *principle* to pick the "optimal" scale
 - FAC, PMS, PMC, ...

Principle of Minimal Sensitivity $\frac{\partial}{\partial \mu} \Sigma_n(\mu) \big|_{\mu_{\rm PMS}} = 0$

depends on order might not be unique

• $\forall \mu \rightsquigarrow P(\delta_3 | \delta_0, \delta_1, \delta_2; \mu)$ • $CI_{68/95}$ (geo) (abc)

- two options:
 - 1. invoke some *principle* to pick the *"optimal"* scale
 - FAC, PMS, PMC, ...
 - 2. combine different $P(\delta_{n+1} | \boldsymbol{\delta}_n; \mu)$

pursued in the following

PRESCRIPTIONS FOR SCALES

Scale Marginalisation (sm):

[Bonvini '20]

treat µ as a hidden model parameter
 & marginalise over it:

$$P_{\rm sm}(\delta_{n+1} | \boldsymbol{\delta}_n) = \int d\mu \ P(\delta_{n+1}, \mu | \boldsymbol{\delta}_n)$$
$$= \int d\mu \ P(\delta_{n+1} | \boldsymbol{\delta}_n; \mu) \ P(\mu | \boldsymbol{\delta}_n)$$

• $P(\mu | \boldsymbol{\delta}_n) \propto P(\boldsymbol{\delta}_n; \mu) P_0(\mu)$ with prior: $P_0(\mu) = \frac{1}{2\mu \ln F} \Theta\left(\ln F - \left|\ln\left(\frac{\mu}{\mu_0}\right)\right|\right)$

 $\mu = \mu_0 / F \quad \mu_0 \quad F \, \mu_0$

Scale Average (sa):

[Duhr, AH, Mazeliauskas, Szafron '21]

μ has no probabilistic interpretation
 → average over it:

$$P_{\text{sa}}(\delta_{n+1} | \boldsymbol{\delta}_n) = \int d\mu \ w(\mu) \ P(\delta_{n+1} | \boldsymbol{\delta}_n; \mu)$$

• weight function:

$$w(\mu) = \frac{1}{2\mu \ln F} \Theta\left(\ln F - \left|\ln\left(\frac{\mu}{\mu_0}\right)\right|\right)$$

$$\ln \mu$$

$$F \mu_0$$

PEAK OF THE DISTRIBUTIONS*

Scale Marginalisation (sm):

- if $\mu_{FAC} \in [\mu_0/F, F \mu_0]$ then $P_{\rm sm}(\delta_{n+1} | \boldsymbol{\delta}_n)$ peaks at $\Sigma_n(\mu_{\rm FAC})$
 - $P(\boldsymbol{\delta}_n | \boldsymbol{\mu})$ dominated by (k = n) term
 - symmetric model $\rightarrow \delta_n(\mu) = 0$ enhanced

Choice of how to interpret the scale has consequences for predictions!

* for symmetric models, a convergent series, and reasonable assumptions

Scale Average (sa):

- if $\mu_{PMS} \in [\mu_0/F, F \mu_0]$ then $P_{sa}(\delta_{n+1} | \boldsymbol{\delta}_n)$ peaks at $\Sigma_n(\mu_{PMS})$
 - overlap between $P(\delta_{n+1} | \boldsymbol{\delta}_n; \mu)$ enhanced at stationary point $\rightarrow \Sigma'_n(\mu_{\rm PMS}) \approx 0$

INCLUSIVE CROSS SECTIONS UP TO N³LO

• n < 2: CI₆₈ bigger than 9pt • $\delta_1 < 0 \Rightarrow abc$ alternating n > 2: all prescriptions similar

- δ_3 is large and outside of 9pt!
 - similar unc.: sa \simeq 9pt
- n = 2: sm \ll others (μ_{FAC})
 - n = 3: all prescriptions similar

- large cancellations in the ratio
- n < 2: 9pt performs poorly
- (anticipated by *abc*) $(A_W)_n \nearrow$
- size: $abc \leq others$

overall: not radically different estimates for Δ_{MHO} $(n \ge 2)$

DIFFERENTIAL DISTRIBUTIONS

- Bayesian approach also applicable to distributions → treat each bin individually ↔ will not include correlations!
- new challenges
 - → inclusive ggH: $M_{\rm H}$ vs. $\frac{1}{2}M_{\rm H}$? Just let the model figure it out.
 - differential distributions can probe different kinematic regimes → dynamical scale choice ↔ *many choices!* \rightarrow e.g. in jet production: p_{T}^{j} , $p_{T}^{j_{1}}$, $\langle p_{T}^{j} \rangle$

re-cycling via quadrature limited \rightsquigarrow ideally interpolation grids

no longer "easy" to identify an appropriate hard scale μ_0 (up to rescaling)

 $II - \nabla - i \hat{II}$

$$\langle p_{\rm T}' \rangle_{\rm avg}$$
, $H_{\rm T} \equiv \sum_{i \in jets} p_{\rm T}'$, $H_{\rm T} \equiv \sum_{i \in partons} p_{\rm T}'$, ...

W-BOSON + JET PRODUCTION

● *n* < 2:

- CI₆₈ bigger than 9pt
- *abc* captures pos. shift

•
$$n = 2$$
:

- almost identical bands
- $\Delta_{\rm MHO}$ very robust
- sm vs. sa
 - almost identical CI

DI-PHOTON PRODUCTION

- example where 9pt fails
 - large corrections
 - $\Delta_{\rm MHO}^{\rm NNLO}\gtrsim\Delta_{\rm MHO}^{\rm NLO}$
 - no sign of convergence

$$\sim$$
 CI₆₈ ~ 2-3 × 9pt

• *n* = 2:

- marginal overlap for geo
- differences in *size* & *position*
- ideally N3LO for robust Δ_{MHO}

• sm \simeq sa

large correctionsprohibit FAC points

THE PROBLEM WITH JETS...

non-trivial change of dynamical scales cannot be captured by a simple re-scaling

WORK IN PROGRESS - CORRELATIONS

- idea: if two bins show similar (opposite) perturbative behaviour \hookrightarrow two bins should be partially (anti-)correlated.
- we want: joint probability distribution P(x, y) for two bins x & y \rightarrow preserve projections for compatibility:

$$P(x) = \int dy \ P(x, y) = \int dz \ P(x, z)$$

possibilities: algorithmic "earth movers distance"; map P(x) onto P(y), ... \hookrightarrow can be done much simpler

[AH, Mazeliauskas w.i.p]

 \rightarrow hidden parameter -1 < c < +1 to smoothly implement the correlation

WORK IN PROGRESS - CORRELATION MODEL IN miho

projections of multi-dim. Gaussians (+ correlation matrix) are again Gaussian \rightarrow map P_i onto Gaussians, implement correlations, map back

$$P(x,y) = P_1(x)P_2(y)$$

$$\times \frac{d\Phi^{-1}(\alpha)}{d\alpha}\Big|_{\alpha=\Sigma_1(x)} \frac{d\Phi^{-1}(\beta)}{d\beta}\Big|_{\beta=\Sigma_2(y)}$$

$$\times \frac{1}{2\pi\sqrt{1-c^2}} \exp\left(-\frac{1}{2(1-c^2)}\left[\xi(x)^2 + \eta(y)^2\right]\right]$$

[AH, Mazeliauskas w.i.p]

 $\Sigma_i(x) = \int_{-\infty}^x dx' P_i(x')$ $\Phi^{-1}(p) = \sqrt{2} \mathrm{Erf}^{-1}(-1+2p)$ $\xi(x) = \Phi^{-1}\left(\Sigma_1(x)\right)$ $\eta(y) = \Phi^{-1}\left(\Sigma_2(y)\right)$

use inference to constrain c

CONCLUSIONS & OUTLOOK

- Bayesian inference is a powerful framework to estimate Δ_{MHO} probabilistic interpretation $\leftrightarrow P(\delta_{n+1} | \delta_n)$
- - exposes our *assumptions* & *biases* clearly $\leftrightarrow \rightarrow$ model & priors
 - *but*: it is not more reliable than scale variation \rightarrow <u>careful analysis required</u>
- typically for n < 2: $CI_{68} > 9pt$; $n \ge 2$: $CI_{68} \simeq 9pt$
- public code: ミホ (miho) ---> https://github.com/aykhuss/miho
- future directions
 - correlations $(p_T^W/p_T^Z, p_T^Z \text{ vs. } p_T^\ell, \text{ PDF fits & data interpretation, ...)}$
 - marginalisation over models, ...

relying on a <u>single</u> prescription for TH unc. in precision measurements that does not admit a probabilistic interpretation is potentially dangerous!

[AH, Mazeliauskas w.i.p]

CONCLUSIONS & OUTLOOK

- Bayesian inference is a powerful framework to estimate Δ_{MHO} probabilistic interpretation $\leftrightarrow P(\delta_{n+1} | \delta_n)$
- - exposes our *assumptions* & *biases* clearly $\leftrightarrow \rightarrow$ model & priors
 - *but*: it is not more reliable than scale variation \rightarrow <u>careful analysis required</u>
- typically for n < 2: $CI_{68} > 9pt$; $n \ge 2$: $CI_{68} \simeq 9pt$
- public code: ミホ (miho) ---> https://github.com/aykhuss/miho
- future directions
 - correlations $(p_T^W/p_T^Z, p_T^Z \text{ vs. } p_T^\ell, \text{ PDF fits & data interpretation, ...)}$
 - marginalisation over models, ...

relying on a <u>single</u> prescription for TH unc. in precision measurements that does not admit a probabilistic interpretation is potentially dangerous!

[AH, Mazeliauskas w.i.p] Thank you!

TOY EXAMPLE – $\delta_k = (0.7)^k$

• Confidence Intervals $\operatorname{CI}_{x} = [\Sigma_{x}^{\operatorname{low}}, \Sigma_{x}^{\operatorname{upp}}]$ containing x % of the probability

$$P_0(a) = \frac{1}{2} (1 + \omega) (1 - |a|)^{\omega} \Theta(1 - |a|)$$

- dependence on priors
 decreases as *n* increases
- less for ξ as it controls
 the asymmetry of the
 distribution
- for geometric series:

$$\left.\begin{array}{l}\eta \to 0\\ \xi \to \infty\end{array}\right\} \rightsquigarrow S_{n+1}^{\text{est}} \to S_{n+1}$$

 S_{n+1}^{est}

 S_{n+1}^{est}

• estimate for
$$\Gamma_{cusp}^{QCD} - (\Gamma_{cusp}^{QCD})_4$$
 $n = 2$
• $CI_{68} = C_F \left(\frac{\alpha_s}{\pi}\right)^5 [2.1, 9.5]$

•
$$\operatorname{CI}_{95} = C_F \left(\frac{\alpha_s}{\pi}\right)^5 \left[-0.38, 21\right]$$

n

Sensitivity on the Range F

Scale Marginalisation (sm):

Scale Average (sa):

- the integration over μ is in general very costly (numerical) \rightarrow approximate it using quadrature rule (works well for CI_{68/95}) \rightarrow recycle existing calculations done for $\{\mu_0/2, 2\mu_0\}$
- Gauss-Legendre $(w_0 = \frac{8}{18}; w_{\pm 1} = \frac{5}{18}) \rightarrow \text{corresponds to } F \simeq 2.45$ $d\mu w(\mu) f(\mu) \simeq w_{-1} f(\mu_0/2) + w_0 f(\mu_0) + w_{+1} f(2\mu_0)$

