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Three Motivations

Understand (classical) string theory on strongly curved AdS
backgrounds. Can we reproduce features of weakly coupled
(perturbative) gauge theories from the dual string theory?

Are there simpler (non-supersymmetric) examples of AdS/CFT than
gauge-string dualities? Yes - for vector-like large N theories.
Potentially more tractable.

Can tractable holographic examples teach us about stringy geometry?
- black holes and their thermodynamics in a theory with much larger
gauge invariances. Resolution of singularities?

We will focus on some of the recent progress in answering the second
and third questions. I find the first question very interesting but not
much progress has been made on this front and in the rest of the
introduction will make some remarks about this.

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 3 / 52
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Introduction

Theories of gravity on AdS are dual to CFTs on the boundary

Classical limit GN → 0↔ N →∞

Conventional Einstein theories (with small higher derivative
corrections) are dual to large N CFTs with λ→∞.

Most bulk calculations in AdS/CFT are in this regime - ultra strong
coupling in the CFT.

What if we are interested in the CFT with λ ∼ O(1)?

We need to quantize string theory on AdS with RAdS
`s
∼ λ

1
4 .

Currently outside analytic control even for SUSY theories.

We need a different expansion point rather than λ→∞
Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 4 / 52
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Consider the free field point λ = 0.

This has a much larger set of global symmetries than generic
interacting theory.

An infinite number of conserved currents of arbitrary spin.

J(µ1...µs)(x) =
s∑

k=0

c
(s)
k Tr[∂(µ1

. . . ∂µk Φ†(x)∂µk+1
. . . ∂µs)Φ(x)]− (Traces)

Φ(x) is an adjoint scalar for instance. Therefore ∆(J(s)) = s + 2 -
twist two currents. (in d = 3, ∆ = s + 1.)

c
(s)
k are some combinatorial coefficients.

∂µJ(µµ2...µs)(x) = 0 by free equations of motion: ∂2Φ(x) = 0.

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 5 / 52
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The bulk gravitational dual should have gauge fields corresponding to
these global symmetries in the boundary theory.

φ(α1...αs) ∼ φ(α1...αs) +∇(α1
ξα2...αs).

We need a generalization of Einstein’s theory with the above
(linearised) gauge invariances and therefore ”massless” gauge fields of
all spin (i.e. symmetric tensors of rank) s = 2 . . .∞.

These fields believed to lie on the leading Regge trajectory (which
contains the graviton) of the string spectrum on AdS (with λ = 0).

Analogue of αµ1
−1 . . . α

µs
−1α̃

µ1
−1 . . . α̃

µs
−1|p〉 in flat space.

Prediction for the tensionless limit (RAdS
`s
∼ λ

1
4 → 0) of the AdS string

theory (Sundborg, Witten, Sezgin-Sundell).
Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 6 / 52
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There are many more states in the Yang-Mills theory (therefore the
dual AdS string theory) than these twist two operators.

A Hagedorn density of stringy states as opposed to a single Regge
trajectory with a single field for a given spins s.

Nevertheless, the sector of twist two operators in the free theory are
closed amongst themselves under the OPE.

This should therefore describe a closed subsector of the dynamics of
the full theory.

Reasonable to expect that there is a closed subsector for the
dynamics of the dual higher spin gauge fields.

A consistent truncation like that to supergravity (when λ� 1).

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 7 / 52
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the full theory.

Reasonable to expect that there is a closed subsector for the
dynamics of the dual higher spin gauge fields.

A consistent truncation like that to supergravity (when λ� 1).
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What is this consistent truncation?

Might expect dynamics of this subsector to be simpler compared to
the full ”string field theory” of highly curved AdS .

In fact, dynamics highly constrained by the higher spin gauge
symmetries - an alternative to the power of supersymmetry?

An almost unique, consistent, classical theory of interacting higher
spin gauge fields in AdSD exists (D = 3, 4, 5) - constructed by
Vasiliev.

Of intermediate complexity between supergravity and full fledged
String Theory.

Higher spin symmetry is a vast extension of diffeomorphism invariance
and presumably part of the enhanced symmetries of string theory.
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Is the full spectrum of the Free Yang-Mills theory organized by the
higher spin symmetry of the twist two operators? Some evidence
(Bianchi et.al.)

What about going away from λ = 0? Difficult to have higher spin
symmetry exactly preserved in an interacting CFT in d > 2.

Analogue of Coleman-Mandula Theorem (Maldacena-Zhiboedev). All
correlation functions of higher spin currents J(s) that of a free theory
(either bosons or fermions). This is true for any finite N but need not
be true at infinite N.

Indications that the higher spin symmetry is higgsed in the bulk.
(Porrati et.al.) Thus higher symmetry might be broken in a controlled
way.

However, in d = 2, we know there are interacting theories with higher
spin conserved currents (both massive and conformal).
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Overview Motivations Introduction Vasiliev Theories AdS4/CFT3 AdS3/CFT2 Checks/Generalisations

General Features of the Vasiliev Theory

Very non-linear realization of the higher spin symmetry - vast
generalization of diffeomorphism invariant theories.

Necessarily contains an infinite tower of higher spin fields (excepting
for special cases in D = 3).

Does not appear to reduce (in any limit) to Einstein’s equations for
D > 3.

Appears to contain an infinite number of derivatives - non-local on
the scale of the AdS radius.

No action principle known, as of now (except for special cases in
D = 3) - though believed to exist.

The flat space limit appears to be singular - though the theory can be
defined in dS as well.
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Free Higher Spin Theory

Start with non-interacting theory of massless higher spin fields
φ(α1...αs) in a curved background (Fronsdal).

φβγβγα1...αs−4
= 0 φα1...αs ∼ φα1...αs +∇α1ξα2...αs

Gauge parameter is traceless ξααα3...αs−1
= 0.

Linearised equation of motion consistent with gauge invariance

F̂α1...αs ≡ ∇2
(s)φα1...αs − ∇α1∇λφλα2...αs +∇α1∇α2φ

λ
λα3...αs

− 1

R2
AdS

(as,Dφα1...αs + 2gα1,α2φ
λ
λα3...αs

) = 0.

Generalisation of Maxwell and linearised (about AdS) Einstein
equations.
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Follows from the free action given by

S0 =

∫
dDxφα1...αs (F̂α1...αs −

1

2
gα1,α2F̂

λ
λα3...αs

).

Challenge is to generalize action/equations of motion to the
interacting theory preserving (”non-abelian”) gauge invariance.

First recast Fronsdal (linearised) theory by moving to a frame like
formulation : generalization of vielbein and connection

eaα, ω
ab
α → ea1...as−1

α , ωa1...as−1,b
α .

Enlarged gauge invariance - generalized local lorentz rotations →
more gauge fields.

δξe
a1...as−1
α = ∂αξ

a1...as−1

δΛe
a1...as−1
α = ēα,bΛa1...as−1,b; δΛω

a1...as−1,b
α = ∂αΛa1...as−1,b
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Leads to a whole set of ”extra fields” ω
a1...as−1,b1...bt
α , (1 < t ≤ s − 1).

Two row Young tableaux - traceless in (a) or (b) indices.

Generalised (linear) curvature tensors defined as

Ra(s−1),b(t) = dωa(s−1),b(t) + ēc ∧ ωa(s−1),b(t)c

This is invariant under δεω
a(s−1),b(t) = dεa(s−1),b(t) + ēc ∧ εa(s−1),b(t)c .

The equations of motion equivalent to Fronsdal theory are:

Ra(s−1),b(t) = 0, (t < s − 1)
Ra(s−1),b(s−1) = ēc ∧ ēdC

a(s−1)c,b(s−1)d

where C a(s−1)c,b(s−1)d is the generalized Weyl tensor.

In the case of s = 2, these are T a = 0 (torsion free) and
Rab = ēc ∧ ēdC

ac,bd (vanishing of Ricci tensor).
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a(s−1)c,b(s−1)d

where C a(s−1)c,b(s−1)d is the generalized Weyl tensor.

In the case of s = 2, these are T a = 0 (torsion free) and
Rab = ēc ∧ ēdC
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The (generalized) Weyl tensor is constrained by Bianchi identities but
otherwise arbitrary.

This is captured by the ”unfolded formalism” - express e.o.m. in
terms of constraints on an infinite number of auxiliary fields.

E.g. for massless scalar fields (s = 0) satisfying ∂2C = 0, define a
tower of symmetric traceless zero form fields C (a1...an) and the chain
of equations between them

dC = ēa ∧ C a, dC a1 = ēa2 ∧ C a1a2 , etc .

This simply defines the successive derivatives of C and the e.o.m.
follows from the tracelessness of the C (a1...an) i.e. ηa1a2C

a1a2 = 0.

One can do something similar with gauge fields (s=1) and gravity
(s=2) using Bianchi identities.
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For gravity, Bianchi identity DRab = ēc ∧ ēdDC
ac,bd = 0.

An analysis of the symmetries of the RHS implies
DC ac,bd = ēf (2C acf ,bd + C acb,df + C acd ,bf ).

The new auxiliary fields C acf ,bd parametrise the non-vanishing first
derivatives of the Weyl tensor. But they are not completely arbitrary.

Repeating the Bianchi identity (essentially d2 = 0) on the first
derivatives gives a constraint on the non-vanishing second derivatives
and so on

DC a(2+k),b(2) = ēf

(
(k + 2)C a(k+2)f ,bd + C a(k+2)b,df + C a(k+2)d ,bf

)
So we have the derivatives of the Weyl tensor captured by auxiliary
field labelled by two row Young Tableaux with (k + 2) and two boxes
respectively.
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ac,bd = 0.

An analysis of the symmetries of the RHS implies
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More generally, for the higher spin s fields we have the generalized
Weyl tensor and derivatives consisting of two row Young tableaux
with (k + s) and s boxes respectively - C a(k+s),b(s).

They obey the relations

DC a(s+k),b(s) = ēf

(
(k + 2)C a(s+k)f ,b(s) + sC a(s+k)(b1,b(s−1))f

)
Thus the content of the linearised Fronsdal equations are contained in
the two infinite (for each s) set of equations which are for a)
generalized torsion b) covariant constancy of generalized Weyl tensor.

Ra(s−1),b(t)(ω) = 0, (t < s − 1)
Ra(s−1),b(s−1)(ω) = ēc ∧ ēdC

a(s−1)c,b(s−1)d

DC a(s+k),b(s) = ēf

(
(k + 2)C a(s+k)f ,b(s) + sC a(s+k)(b1,b(s−1))f

)
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The next step is to move to a spinor basis. E.g. in D = 4, we have
Xµ → X βδ̇. (In D = 3 we have Xµ → X βγ).

Then we can go between the bases Aβ(n)α̇(m) ⊕ c .c.↔ Aa(p)b(q) with

p = 1
2 |n + m| and q = 1

2 |n −m|.

Thus we have for spin s, ω
(s)

β(n)δ̇(m)
fields with n + m = 2(s − 1) and

n −m = 2t and C
(s)

β(n)δ̇(m)
with n −m = 2s and n + m = 2(s + k).

We now package together all these individual fields of fixed s into a
”superfield” using (grassmann even) spinor oscillators Y β, Ȳ δ̇.

Thus we have a ”connection superfield” (1-form):

Ωα(Y |X ) =
∑
s

∑
n,m;n+m=2(s−1)

ω(s)
α (X )β1...βn;δ̇1...δ̇m

× Y β1 . . .Y βn Ȳ δ̇1 . . . Ȳ δ̇m
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We similarly have another ”Weyl tensor superfield” (0-form):

C (Y |X ) =
∑
s

∑
n,m;n−m=2s

C (s)
α (X )β1...βn;δ̇1...δ̇m

× Y β1 . . .Y βn Ȳ δ̇1 . . . Ȳ δ̇m

We define

Dad = D + ēβδ̇(Yβ
∂

∂Ȳ δ̇
+ Ȳδ̇

∂

Ȳ β
)

D̃ = D − ēβδ̇(YβȲδ̇ +
∂2

∂Ȳ δ̇∂Y β
)

which obey (Dad)2 = (D̃)2 = 0.

Then the (linearised) curvature is R(Y , Ȳ |X ) = DadΩ(Y |X ).
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∂Ȳ δ̇
+ Ȳδ̇
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Then we can re-express the linearised equations in the unfolded
formalism as

R(Y , Ȳ |X ) = ēβδ̇ ē γ̇β
∂2

∂Ȳ δ̇∂Ȳ γ̇
C (0, Ȳ |X ) + c .c .

D̃C (Y , Ȳ |X ) = 0

But we want to go beyond the linearised equations and write down
nonlinear equations for these fields.

For that we use the higher spin algebra as captured by the algebra of
spinor oscillators.

[Y β,Y γ ] = 2iεβγ ; [Ȳ δ̇, Ȳ γ̇ ] = 2iεδ̇γ̇ ; [Y β, Ȳ δ̇] = 0.
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The AdS4 isometries O(3, 2) captured by this oscillator construction.

Mβγ =
1

2i
{Yβ,Yγ}; Pβδ̇ =

1

i
YβȲδ̇

.

More generally, the elements T (n,m) = Y β(n)Ȳ δ̇(m) form a basis for
the higher spin algebra in D = 4 - note that n + m = 2(s − 1) (in
D = 3, only one set of oscillators).

They generate the algebra which is schematically

[T s1 ,T s2 ] =

min(s1,s2)−1∑
l=1

T s1+s2−2l .

i.e. maximum spin s1 + s2 − 2 and minimum |s1 − s2|+ 2.
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For realizing the symmetry non-linearly we need to construct the
nonabelian field strength
R(Y , Ȳ |X ) = dΩ(Y , Ȳ |X ) + Ω(Y , Ȳ |X ) ? Ω(Y , Ȳ |X ) and write
equations in terms of this field and the superfield C (Y , Ȳ |X ).

It turns out that to do this consistently requires another set of
oscillators Zβ, Z̄ δ̇ and another auxiliary superfield
S(Y ,Z |X ) = SβdZ

β + Sδ̇dZ̄
δ̇

We also promote Ω(Y |X )→W (Y ,Z |X ) and C (Y |X )→ B(Y ,Z |X ).

The oscillator algebra (of Y and Z ) induces a ?-product (Moyal).

The generalized gauge symmetry acts (linearly) as

δεW = dX ε+ ε ?W −W ? ε
δεS = dZ ε+ ε ? S − S ? ε
δεB = ε ? B − B ? π(ε)
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The non-linear Vasiliev equations take the form

dA + A ?A = B ? K dZαdZ̄α + c.c .
dB + A ? B − B ? π(A) = 0

A = W + S , K = eZ
αYα (”Kleinian”) and

π(f (Y , Ȳ ,Z , Z̄ |X )) = f (−Y , Ȳ ,−Z , Z̄ |X ).

Actually, the RHS of the first equation can in general be f (B ? K )
which by field redefinition can be put in the form f (w) = w exp iθ(w).

If we demand parity invariance then θ(w) = 0, π2 - type A or type B.

Recovers the linearised equations when expanded around AdS .
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3d Higher Spin Theory

Vasiliev theories in AdS3

In AdS3, gravity does not have propagating d.o.f. Neither do the
higher spin fields.

Nevertheless, a rich classical (and quantum) theory which includes
black holes and other solitonic solutions.

Family of Vasiliev theories with inequivalent symmetry algebras hs(λ)
- one (real) parameter deformation of oscillator algebra.

The Vasiliev equations of motion (with B = 0) reduce to F (A) = 0
for gauge fields A, Ã ∈ hs(λ). Scalars are optional (with mass
M2 = −1 + λ2).

Hence the action (for A, Ã, B = 0) is a sum of Chern-Simons terms
with gauge group hs(λ). (Blencowe; Blencowe-Bergshoeff-Stelle)

When λ = N, hs(λ) = sl(N). Therefore ”hs(λ) = sl(λ)”.
Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 23 / 52
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3d Higher Spin Theory

The spin content of the gauge fields is now truncated. Have spins
s = 2 . . .N.

S(A, Ã) = SCS[A]− SCS[Ã] with level kCS = RAdS
4GN

.

Recognise as a generalization of formulation of classical 3d gravity in
terms of SL(2,R)× SL(2,R) Chern-Simons theory.

In that case, we had eaα, ω
ab
α = εabcωc

α.

Aα, Ãα = (ωa
α ±

1

RAdS
eaα)ta

are the SL(2,R)× SL(2,R) gauge fields.

Now have (ω
a1...as−1
α ± 1

RAdS
e
a1...as−1
α ) which can be combined together

(s = 2 . . .N) into SL(N,R)× SL(N,R) (or hs[λ]× hs[λ], more
generally) gauge fields.
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Aα, Ãα = (ωa
α ±

1

RAdS
eaα)ta

are the SL(2,R)× SL(2,R) gauge fields.

Now have (ω
a1...as−1
α ± 1

RAdS
e
a1...as−1
α ) which can be combined together

(s = 2 . . .N) into SL(N,R)× SL(N,R) (or hs[λ]× hs[λ], more
generally) gauge fields.

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 24 / 52



Overview Motivations Introduction Vasiliev Theories AdS4/CFT3 AdS3/CFT2 Checks/Generalisations

3d Higher Spin Theory

Asymptotic Symmetries in 3d

AdS3 gravity has an asymptotic symmetry algebra larger than the
isometries SL(2,R)× SL(2,R) - full Virasoro (two copies) with
c = c̄ = 3`

2GN
-Brown-Henneaux.

Analysis generalized to SL(N,R)× SL(N,R) higher spin theories
(Campoleoni et.al., Henneaux-Rey).

Result: WN extended symmetry algebra - containing holomorphic
currents W (s)(z) of spins s = 2 . . .N. (W (2)(z) = T (z))

More generally, for hs(λ) theories, the asymptotic symmetry algebra
is W∞[λ] – hs(λ) is its ”wedge algebra”. (Gaberdiel-Hartman).

Thus any dual CFT must have W∞[λ] symmetry.

For λ = 0, 1, it reduces to a lie algebra which governs higher spin
currents of free fermions/bosons in 2d. (Pope-Romans-Shen).
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Klebanov-Polyakov Duality for 3d Vector Models

Dual to a Vasiliev theory needs a much smaller infinity of single
particle operators compared to a gauge theory. Not a hagedorn
density of states.

Vector like models have far fewer degrees of freedom ∝ N, rather
than gauge theories ∝ N2.

The only single particle operators are the symmetric bilinears∑s
k=0 c

(s)
k [∂(µ1

. . . ∂µkφi (x)∂µk+1
. . . ∂µs )φi (x)]− (Traces).

Therefore dual bulk fields are only the Vasiliev gauge fields (together
with the scalar). (Klebanov-Polyakov, Sezgin-Sundell)

In d = 3, vector models have nontrivial quantum behavior when one
includes interactions. E.g. O(N) vector models and U(N)
Gross-Neveu model.
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In O(N) vector models can add to the free action
S0 =

∫
d3x∂µφi (x)∂µφi (x) an interaction (”double trace”) term

S1 = λ
∫
d3x(φi (x)φi (x))2.

There is a nontrivial fixed point (”Wilson-Fisher”) of the RG in the
infrared. Can be analyzed exactly in the large N limit.

The scalar bilinear φi (x)φi (x) has dimension ∆ = 2 + O( 1
N ) instead

of the canonical ∆ = 1 at the free (UV) fixed point.

Proposal (KP): The free and interacting CFTs are both dual to the
type A Vasiliev theory with spins s = 0, 2, 4 . . . on AdS4 but with the
bulk scalar (m2 = − 2

R2
AdS

) quantized in two inequivalent ways.

Proposal (SS): The free and interacting U(N) Gross-Neveu model is
dual to the Type B Vasiliev theory (with scalar again quantized in two
ways).

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 27 / 52



Overview Motivations Introduction Vasiliev Theories AdS4/CFT3 AdS3/CFT2 Checks/Generalisations

In O(N) vector models can add to the free action
S0 =

∫
d3x∂µφi (x)∂µφi (x) an interaction (”double trace”) term

S1 = λ
∫
d3x(φi (x)φi (x))2.

There is a nontrivial fixed point (”Wilson-Fisher”) of the RG in the
infrared. Can be analyzed exactly in the large N limit.

The scalar bilinear φi (x)φi (x) has dimension ∆ = 2 + O( 1
N ) instead

of the canonical ∆ = 1 at the free (UV) fixed point.

Proposal (KP): The free and interacting CFTs are both dual to the
type A Vasiliev theory with spins s = 0, 2, 4 . . . on AdS4 but with the
bulk scalar (m2 = − 2

R2
AdS

) quantized in two inequivalent ways.

Proposal (SS): The free and interacting U(N) Gross-Neveu model is
dual to the Type B Vasiliev theory (with scalar again quantized in two
ways).

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 27 / 52



Overview Motivations Introduction Vasiliev Theories AdS4/CFT3 AdS3/CFT2 Checks/Generalisations

In O(N) vector models can add to the free action
S0 =

∫
d3x∂µφi (x)∂µφi (x) an interaction (”double trace”) term

S1 = λ
∫
d3x(φi (x)φi (x))2.

There is a nontrivial fixed point (”Wilson-Fisher”) of the RG in the
infrared. Can be analyzed exactly in the large N limit.

The scalar bilinear φi (x)φi (x) has dimension ∆ = 2 + O( 1
N ) instead

of the canonical ∆ = 1 at the free (UV) fixed point.

Proposal (KP): The free and interacting CFTs are both dual to the
type A Vasiliev theory with spins s = 0, 2, 4 . . . on AdS4 but with the
bulk scalar (m2 = − 2

R2
AdS

) quantized in two inequivalent ways.

Proposal (SS): The free and interacting U(N) Gross-Neveu model is
dual to the Type B Vasiliev theory (with scalar again quantized in two
ways).

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 27 / 52



Overview Motivations Introduction Vasiliev Theories AdS4/CFT3 AdS3/CFT2 Checks/Generalisations

In O(N) vector models can add to the free action
S0 =

∫
d3x∂µφi (x)∂µφi (x) an interaction (”double trace”) term

S1 = λ
∫
d3x(φi (x)φi (x))2.

There is a nontrivial fixed point (”Wilson-Fisher”) of the RG in the
infrared. Can be analyzed exactly in the large N limit.

The scalar bilinear φi (x)φi (x) has dimension ∆ = 2 + O( 1
N ) instead

of the canonical ∆ = 1 at the free (UV) fixed point.

Proposal (KP): The free and interacting CFTs are both dual to the
type A Vasiliev theory with spins s = 0, 2, 4 . . . on AdS4 but with the
bulk scalar (m2 = − 2

R2
AdS

) quantized in two inequivalent ways.

Proposal (SS): The free and interacting U(N) Gross-Neveu model is
dual to the Type B Vasiliev theory (with scalar again quantized in two
ways).

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 27 / 52



Overview Motivations Introduction Vasiliev Theories AdS4/CFT3 AdS3/CFT2 Checks/Generalisations

In O(N) vector models can add to the free action
S0 =

∫
d3x∂µφi (x)∂µφi (x) an interaction (”double trace”) term

S1 = λ
∫
d3x(φi (x)φi (x))2.

There is a nontrivial fixed point (”Wilson-Fisher”) of the RG in the
infrared. Can be analyzed exactly in the large N limit.

The scalar bilinear φi (x)φi (x) has dimension ∆ = 2 + O( 1
N ) instead

of the canonical ∆ = 1 at the free (UV) fixed point.

Proposal (KP): The free and interacting CFTs are both dual to the
type A Vasiliev theory with spins s = 0, 2, 4 . . . on AdS4 but with the
bulk scalar (m2 = − 2

R2
AdS

) quantized in two inequivalent ways.

Proposal (SS): The free and interacting U(N) Gross-Neveu model is
dual to the Type B Vasiliev theory (with scalar again quantized in two
ways).

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 27 / 52



Overview Motivations Introduction Vasiliev Theories AdS4/CFT3 AdS3/CFT2 Checks/Generalisations

Checks and Generalisations

Spectrum matches to leading order in N.

Three point functions of arbitrary currents J(s) in the boundary match
with that in the bulk - from cubic interaction term (Giombi-Yin).

Legendre transformation in boundary between correlation functions of
free and interacting theories. Reflected in change of boundary
conditions for scalar in bulk.

Generalisation (GMPTWY): Couple Chern-Simons gauge field to
vector fermions and take λ = N

k to be non-zero. Line of interacting
CFTs. What is the bulk dual of these CFTs? (Also see Aharony,
Gur-Ari, Yacobyfor scalar case)

Spectrum identical to that of the λ = 0 theory. However, correlation
functions of the current no longer those of the free theory. Currents
are not conserved - consistent with MZ theorem.
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Minimal Model Holography

Can sidestep MZ theorem in 2d CFTs. Hence proposal for a Vasiliev
dual to a class of interacting CFTs with higher spin (i.e. WN)
symmetries. (Gaberdiel-R.G.)

The CFT: a coset WZW model. SU(N)k×SU(N)1

SU(N)k+1
- WN minimal models.

Take the ’t Hooft large N limit, keeping 0 ≤ λ = N
N+k ≤ 1 fixed. A

line of CFTs with central charge cN(λ) = N(1− λ2) - vector like
model.

The Bulk Dual: Vasiliev hs[λ] higher spin theory (including spins
2, 3 . . .∞) in AdS3 coupled to two equally massive complex scalar
fields with M2 = −(1− λ2).

The two scalars quantized oppositely ↔ basic primaries with
h± = 1

2 (1± λ). Also c = 3RAdS
2GN

.
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Coset Models

Coset Models

A G/H coset theory is defined in terms of a G WZW theory in which
a subgroup H is gauged (without kinetic term).

Therefore TG/H(z) = TG (z)− TH(z) and cG/H = cG − cH

Building block for rational CFTs for different G and H.

Basic case: G = SU(N)k × SU(N)l and H = SU(N)k+l (diagonal).

We will consider the case l = 1 (in the large N limit, additional l is
like adding flavour)

Thus the class of models to focus on is SU(N)k×SU(N)1

SU(N)k+1
- WN minimal

model series.
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Coset Models

For this family,

cN(k) = (N − 1)[1− N(N + 1)

p(p + 1)
] ≤ (N − 1)

where p = k + N. i.e. (p = N + 1,N + 2, . . .).

In the case N = 2, this is the coset construction of the unitary
Virasoro discrete series (GKO).

c2(k) = 1− 6

p(p + 1)
≤ 1

with p = 3, 4 . . ..

Special cases - k = 1 :ZN parafermion theory.

Special cases - k =∞ : cN(∞) = (N − 1). Delicate limit to take.
Essentially theory of (N − 1) free bosons in singlet sector - with
twisted sectors from a continuous orbifold (Gaberdiel-Suchanek).
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Coset Models

Spectrum of Primaries are labelled by two integrable representations
(Λ+,Λ−) of SU(N)k and SU(N)k+1 respectively.

(Λ+,Λ−) can be parametrised by Dynkin labels, Young Tableaux etc.

Dimensions of primaries given explicitly by:

h(Λ+; Λ−) =
1

2p(p + 1)

( ∣∣∣∣(p + 1)(Λ+ + ρ)− p(Λ− + ρ)

∣∣∣∣2 − ρ2
)

ρ is the Weyl vector for SU(N).

In the case, N = 2 reduces to usual Feigin-Fuchs expression

h(r , s) =
(r(p + 1)− sp)2 − 1

4p(p + 1)
= h(p − r , p + 1− s).
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Coset Models

Particular cases: h(0; f) = (N−1)
2N

(
1− N+1

N+k+1

)
;

h(f; 0) = (N−1)
2N

(
1 + N+1

N+k

)
.

h(0; adj) = 1− N
N+k+1 ; h(adj; 0) = 1 + N

N+k .

The partition function of the coset theory given in terms of
contributions from each of these primaries.

Captured by ”branching functions” in the decomposition of G WZW
characters in terms of those for H.
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Coset Models

Branching functions also known explicitly:

b(Λ+;Λ−)(q) =
1

η(q)N−1

∑
w∈Ŵ

ε(w)q
1

2p(p+1)
((p+1)w(Λ++ρ)−p(Λ−+ρ))2

.

Ŵ is the affine Weyl group (affine translations and usual Weyl
reflections).

Analogue of Rocha-Caridi characters for Virasoro minimal models.

(Diagonal) modular invariant partition function given by

ZCFT =
∑

Λ+,Λ−

|b(Λ+;Λ−)(q)|2

.

Rajesh Gopakumar (HRI) Higher Spin Theories and Holography CERN Winter School 34 / 52



Overview Motivations Introduction Vasiliev Theories AdS4/CFT3 AdS3/CFT2 Checks/Generalisations

Coset Models

Branching functions also known explicitly:

b(Λ+;Λ−)(q) =
1

η(q)N−1

∑
w∈Ŵ
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Coset Models

Symmetries

The SU(N) cosets have an extended WN symmetry. In addition to
T (z), higher spin conserved currents W (3)(z), . . .W (N)(z).

Constructed using higher order Casimir invariants. For Instance:

W (3)(z) ∝ dabc [a1(Ja(1)J
b
(1)J

c
(1))(z) + a2(Ja(2)J

b
(1)J

c
(1))(z)

+ a3(Ja(2)J
b
(2)J

c
(1))(z) + a4(Ja(2)J

b
(2)J

a
(2))(z).

Similarly,W (m)(z) from mth order Casimir combinations of the
currents Ja(1,2)(z) of SU(N)k and SU(N)1 respectively.

The WN OPE gives rise to a non-linear symmetry algebra - rather
than a Lie Algebra.
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The WN OPE gives rise to a non-linear symmetry algebra - rather
than a Lie Algebra.
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Coset Models

RG Flows

One can flow between the minimal models with different k or p (for
fixed N).

The relevant operator of the pth minimal model, (0; adj), induces the
RG flow. The IR fixed point is the p − 1th model.

(0; adj)p
RG-flow by (0; adj)−−−−−−−−−−−→ (adj; 0)p−1.

Analogue of (1, 3) operator flowing to (3, 1) operator for Virasoro
minimal models.

Similar analogues of (1, 2) operator flowing to (2, 1) operators

(0; f)p
RG-flow by (0; adj)−−−−−−−−−−−→ (f; 0)p−1.
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Coset Models

’tHooft Limit

The ’tHooft limit: N, k →∞ with 0 ≤ λ = N
k+N ≤ 1 fixed.

In this limit, the central charge cN(λ) ' N(1− λ2)→∞.

Dimensions of operators simplify remarkably:

h(0; f) =
(N − 1)

2N

(
1− N + 1

N + k + 1

)
→ 1

2
(1− λ)

h(f; 0) =
(N − 1)

2N

(
1 +

N + 1

N + k

)
→ 1

2
(1 + λ)

h(0; adj) = 1− N

N + k + 1
→ 1− λ

h(adj; 0) = 1 +
N

N + k
→ 1 + λ.

In general, representations which are finite tensor powers of the
fund./anti-fund. have finite scaling dimensions in the ’tHooft limit.
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Coset Models

However, there is a large (exponential) degeneracy in this limit. Many
operators with almost the same dimension.

E.g. the (Λ; Λ) primaries are almost degenerate with the vacuum

state h(Λ; Λ) = C2(Λ)
(N+k)(N+k+1) →

B(Λ)
2 × λ2

N → 0-”light states”. (B(Λ)

is the number of boxes in Λ.)

Does a good large N limit exist then?

Nevertheless, correlation functions of the WN minimal model seem to
behave well at large N - expected factorization behavior in the four
point function and 1

N suppression of interactions.
(Papadodimas-Raju, Chang-Yin)

The large degeneracy does not spoil the large N behaviour because
thefusion rules between the states are very special. Strong selection
rules (at finite N) lead to most of the light states exactly decoupling
in any k-point correlation function.
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Checks of the Proposal

Now try to check various aspects of the proposed duality between the
’tHooft limit of the WN minimal models and the hs[λ] higher spin theory
on AdS3:

Symmetries and Spectrum

Correlation Functions

Properties of Black Holes (and other solitons)
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Symmetries

The bulk hs[λ] theory has an asymptotic W∞[λ] symmetry. Naively,
seems different from the large N limit of the WN algebra.

However, there is now a lot of evidence that the two are the same -
from matching of representations. (Gaberdiel-Hartman;
Gaberdiel-R.G-Hartman-Raju)

Motivated by a generalized (to non integer) level-rank duality:

SU(N)k × SU(N)1

SU(N)k+1
≡ SU(λ)l × SU(λ)1

SU(λ)l+1

where λ = N
N+k and l = λ

N − λ. (Kuniba et.al.)

The symmetry group of the RHS is the extension of the wedge
algebra sl(λ) = hs[λ] while that that of the LHS is the WN . Indeed,
there is evidence for this equality at finite N, k as well.
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Spectrum (Bulk)

Can the linearised fluctuations of the higher spin gauge fields (and two
scalars) account for all the states in the CFT (to leading order in large N)?

Perturbative bulk spectrum given by

Zbulk = ZclassZ1−loop = (qq̄)−c/24ZHSZscal(h+)2Zscal(h−)2.

where ZHS ,Zscal are the bulk one loop determinants from the higher spin
fields (s = 2, 3 . . . ,∞) and scalars resp.
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ZHS =
∞∏
s=2

∞∏
n=s

1

|1− qn|2
=
∞∏
n=1

|1− qn|2 ×
∞∏
n=1

1

|(1− qn)n|2
≡ |M̃(q)|2.

Gaberdiel-R. G.-Saha

Zscal(h) =
∞∏

l=0,l ′=0

1

(1− qh+l q̄h+l ′)

= exp

[ ∞∑
n=1

Zsing par(h, q
n, q̄n)

n

]
=

∑
R

χ
u(∞)
R (zi ) χ

u(∞)
R (z̄i ) (zi = qi+h−1).

where Zsing par(h, q, q̄) = qhq̄h

(1−q)(1−q̄) . (Giombi-Maloney-Yin)
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Putting it all together:

Zbulk = (qq̄)−c/24|M̃(q)|2
∑

R±,S±

|χR+(z+
i )χS+(z+

i )χR−(z−i )χS−(z−i )|2.

R±, S± are representations of U(∞) with a finite number of boxes in the
Young Tableaux. (z±i = qi+h±−1).

View this as the combined contribution from (weakly coupled)
multi-particle states of the complex scalar with dimension h+ (the pieces
R+, S+), and that of the scalar with dimension h− (the pieces R−, S−) all
dressed with the boundary graviton excitations in M̃(q).
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Spectrum (CFT)

The branching functions simplify considerably in the ’t Hooft limit
(Gaberdiel-R.G.-Hartman-Raju)

b(Λ+;Λ−)(q) ∼= q−
c

24 M̃(q) q
λ
2

(B+−B−) qC2(Λ+)+C2(Λ−) SΛ+Λ−

S00
∼= q

λ
2

(B+−B−)
∑

Λ

NΛ
Λ+Λ−

q−
λ
2
B(Λ) b(Λ;0)(q) ,

using the Verlinde formula. (B± = B(Λ±) ≡ B(R±) + B(S±)).

Further simplifying the RHS

b(Λ;0)(q) ∼= q−
N−1

24
(1−λ2) · M̃(q) · q

λ
2
B(Λ) qC2(Λ) · dimq(Λ)

∼= q−
N−1

24
(1−λ2) · M̃(q) · χRT (z+

i )χST (z+
i )
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If we drop the contribution from the extra light (degenerate) states in the
branching functions then it turns out that the modified CFT character is

chcftR+S+R−S−(q) = q−
c

24 · M̃(q) · χRT
+

(z+
i )χST

+
(z+

i )χRT
−

(z−i )χST
−

(z−i ) .

so that the modified CFT partition function is

Z̃CFT(λ) =
∑

R+S+R−S−

|chcftR+S+R−S−(q)|2 .

This agrees with the contribution from the perturbative excitations in the
bulk

Zbulk(λ) = (qq̄)−c/24|M̃(q)|2
∑

R±,S±

|χR+(z+
i )χS+(z+

i )χR−(z−i )χS−(z−i )|2.
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Actually, both sides are expressed in terms of characters of hs[λ] -
indicates that the WN,k models have hs[λ] symmetry in the ’tHooft
limit.

But we need the additional light states at finite N for a modular
invariant CFT.

Where are they in the bulk hs[λ] theory?

A complete accounting of all the additional states has not yet been
done. But strong indications that these are related to light
non-perturbative states in the bulk theory.

Special feature of the Vasiliev theory - can have smooth conical
defect geometries. These states form a discretuum stretching all the
way to the vacuum! (Castro-R.G.-Gutperle-Raeymakers)

For instance, the (Λ,Λ) primaries are perfectly accounted for by these
novel solutions (after an analytic continuation).
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Correlation Functions

Compare CFT three point function of two scalar primaries and one
spin s current J(s) 〈O±Ō±J(s)〉 with bulk three point function of two
scalars and one spin s gauge field.
(Chang-Yin, Ahn, Ammon-Kraus-Perlmutter)

This has now been matched for any value of the spin s and parameter
λ.

〈O±(z1)Ō±(z2)J(s)(z3)〉 =
(−1)s−1

2π

Γ(s)2

Γ(2s − 1)

Γ(s ± λ)

Γ(1± λ)

×
(

z12

z23z13

)s

〈O±(z1)Ō±(z2)〉

The CFT answer follows from assuming hs[λ] symmetry in the
’tHooft limit.
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Black Holes

3d Vasiliev theories have a novel set of black holes - generalizations of
BTZ black holes - which carry higher spin charges. (Gutperle-Kraus;
Ammon et.al.)

Original construction was in SL(N) Vasiliev theory (i.e. λ = N), in
particular N = 3.

The notion of singularity is now a gauge dependent concept. Since
curvature tensor is not gauge covariant under higher spin gauge
transformations.

Thus a solution that has a singularity maybe smooth after a gauge
transformation. Singularities are gauge artifacts! (GK, Castro, Hirano
et.al.)

Gauge invariant quantity in SL(N) CS theory are holonomies -
P exp

∫
A along some cycle.
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A black hole in Euclidean AdS3 can be taken to be one which has a
contractible loop in the time direction. Smoothness demands this
must be trivial.

Prescription (GK): Take the holonomies in the time direction to be the
same as for the BTZ black hole. ((0,±2πi) eigenvalues for N = 3)

Gives two relations amongst four quantities (Mass, Temperature, W3

charge, µ). Analogue of smoothness at horizon determining one
relation between M and β.

First law of thermodynamics then follows! Non geometric way of
obtaining black hole entropy.

Construction generalized to higher spins (Tan) especially to W∞(λ)
(Kraus-Perlmutter). Partition function (in a series exp. in µ) agrees
with CFT answer for λ = 0, 1. Appears to now also agree for arbitrary
λ (Gaberdiel-Hartman-Jin).
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Where to?

Understand completely the role of HS symmetry in organizing the
spectrum of free Yang-Mills theory - i.e. all the higher twist
operators. (Bianchi et.al). What is the role of massive higher spin
theories in string theory (Sagnotti et.al.)

Understand better the role of the higher spin algebra in Yang-Mills
theory for λ 6= 0. (Porrati et.al.) How exactly does the higgsing of
the gauge invariance in the bulk take place? What constraints does it
place on the theory?

Can we use MZ techniques to see how ”softly broken” higher spin
symmetry might still be usefully studied?

Use these insights to develop systematic methods of expansion about
λ = 0 in the bulk and learn something about the string theory on
AdS5?
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Under what conditions are Vasiliev theories dual to CFTs? Do they
have to be embeddable in a string theory? How do vector model
dualities fit into the general class of AdS/CFT examples?

Can we construct more non-SUSY examples of AdS/CFT using
Vasiliev(-like) theories? (GMPTYW, Aharony et.al. examples?) Are
there generically new qualitative features in non-SUSY AdS/CFT
examples (like light states)? What can vector dualities teach us about
non-SUSY gauge theories in 4d?

Generalizations to other 2d cosets (Ahn, Gaberdiel-Vollenweider).
Other RCFTs (Kiritsis). Supersymmetric CFTs
(Creutzig-Hikida-Ronne).

Can we generalize the dualities to massive theories? A large space of
2d integrable QFTs related by RG flows.
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Study other classical solutions of higher spin e.o.m. More black
holes? With scalar Hair?

Role of integrability in black hole dynamics. Short Poincare
recurrence time in these 2d CFTs (Chang-Yin). Understand black
hole puzzles in a toy model.

de Sitter Holography? dS4/CFT3 (Anninos-Hartman-Strominger).
dS3/CFT2 (Ouyang).

Can we prove these vector model dualities? Might be the simplest
examples of holography. (Douglas-Mazzucato-Razamat).
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