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Characteristic feature of non-abelian gauge theories:

the physics at strong coupling is qualitatively different 
from the physics at weak coupling

The weak coupling regime is usually well understood 
thanks to perturbation theory, but in general we have 

much less control over the strong coupling regime
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In gauge theories with an AdS dual, the strong 
coupling physics is encoded in a weakly coupled 

string or gravity theory, and this leads to predictions 
for the strong coupling behavior

Conversely, if we are able to derive the AdS prediction 
for the strong coupling behavior directly in the gauge 
theory, we have a test of the corresponding AdS/CFT 

duality
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More ambitiously, we would like to have exact results 
which interpolate between the weak coupling 

regime, where perturbation theory holds, and the 
strong coupling regime described by the dual string 

In these lectures I will describe a new set of 
techniques to address the problem of strong-weak 
coupling interpolation in a large class of 3d CFTs 

with AdS duals
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One problem that motivated the development of 
these techniques is the theory of N M2 branes. This 
theory is supposed to have a U(N) gauge symmetry, 

so at weak coupling the number of degrees of 
freedom grows like N2

However, the AdS dual predicts that at strong 
coupling this number should grows like N3/2

One concrete goal of these lectures will be to 
explain this puzzling scaling at strong coupling from 

first principles
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Perturbation theory

In these lectures we will look at non-abelian gauge theories with 
gauge group U(N) whose action has the schematic structure

S =
1
gs

∫
tr

(
1
2
ADA + A3 + · · ·

)

gauge coupling differential operator interactions

Example: Yang-Mills theory S =
1

4g2
YM

∫
tr (FµνFµν)

second order 
differential operator
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Our favourite example will be however a non-abelian gauge 
theory in three dimensions, Chern-Simons theory, and their 

supersymmetric extensions

first order differential operator

We will denote gs =
2πi
k

1) k has to be an integer so that is invariant under eiSCS

large  gauge transformations

SCS = − k

4π

∫

M
tr

(
A ∧ dA +

2i
3

A ∧A ∧A
)

2) the theory based on this action is exactly solvable 
and topological [Witten 1988],

CS level
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Both Yang-Mills theory and Chern-Simons theory can be treated 
in perturbation theory. One way to go beyond standard 

perturbation theory is to use the 1/N expansion of ‘t Hooft

−

gluon propagator

gluon 
vertex
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In these lectures we will look at free energies of U(N) theories 
with fields in the adjoint/bifundamental, on different manifolds, in 

particular on the three-sphere

Z(S3) =
∫

DA · · · e−S(A,··· )

F (S3) = log Z(S3) =
∞∑

g=0

N2−2gFg(t)

t = gsN ‘t Hooft parameter

Fg(t) = sum of double-line, connected vacuum 
diagrams of genus g

genus g 
free energy

genus g=0:  planar free energy
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F0(t) = + + · · ·

t3 t4

In general Fg(t) =
∑

n≥0

ag,ntn

This is an expansion at weak ‘t Hooft coupling, and it is 
essentially equivalent to perturbation theory (but restricted to 

genus g diagrams)

Warning: this expansion does not include one-loop terms 
and terms coming from the path-integral measure, which lead 

sometimes to singular terms at t = 0
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In many interesting theories (CS, ABJM, ...) the weak-coupling 
expansion is analytic at t=0 with a finite radius of convergence

ag,n ∼ |tc|−n, n" 1 common to all g

This result can be interpreted in a purely diagrammatic way: it 
is just a statement on the growth of the number of double-
line diagrams with the number of holes (or vertices) at fixed 

genus.

This behavior is in sharp contrast with standard perturbation 
theory, where the coefficients grow factorially, rather 
exponentially, and there is zero radius of convergence
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Warning: this analyticity property is not expected to be 
valid for generic gauge theories, like YM, due to the 

presence of renormalons 

If there are no singularities on the real axis, we can analytically 
continue the genus g free energies outside the region of 
convergence, to the strong coupling region. This is the 
mathematical counterpart of the weak-strong coupling 

interpolation

tc

t! 1singularity

strong coupling
region
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A   B   J  M  theory

U(N) U(N)

A(1)
µ A(2)

µ

k −k
Basic building block: two Chern-

Simons theories with gauge 
symmetry U(N) and opposite 
levels (or coupling constants)

In order to proceed, we have to supersymmetrize the model 
and couple both “nodes”
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N=2 SUSY in 3d

We will work in Euclidean signature, and on the 3-sphere, so 
the SUSY transformations we will describe are slightly 

different from the usual ones

Conventions: γµ = Pauli matrices

symplectic 
productCαβ =

(
0 −1
1 0

)
ε̄λ = ε̄αCαβλβ

N=2 vector multiplet
(dim. red. of the 

N=1 vector multiplet 
in d=4)

scalars 

V : Aµ, σ, λ, λ̄, D
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δAµ =
i
2
(ε̄γµλ− λ̄γµε),

δσ =
1
2
(ε̄λ− λ̄ε),

δλ = −1
2
γµνεFµν −Dε + iγµεDµσ +

2i
3

σγµDµε

etc.

SUSY parameters are space-time dependent. They are required 
to be Killing spinors

Dµε =
i

2r
γµε, Dµε̄ =

i
2r

γµε̄

r = radius of three-sphere

δ = δε + δε̄

SUSY transformations

Monday, February 6, 2012



We can now construct a supersymmetric extension of CS theory

SSCS = −
∫

S3 tr
(
A ∧A + 2i

3 A3 − λ̄λ + 2Dσ
)

Of course, there is another supersymmetric action for the 3d 
vector multiplet, namely super-Yang-Mills theory

Exercise: check that δSSCS = 0

SSYM =
∫

S3
tr

[
1
4
FµνFµν +

1
2
DµσDµσ +

1
2

(
D +

σ

r

)2
+ fermions

]

full covariant derivative 
(gauge+spin connections)
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Finally, we need matter supermultiplets:

N=2 chiral multiplet
(dim. red. of the 

N=2 chiral multiplet in 
d=4)

Φ : φ, φ̄, ψ, ψ̄, F, F̄

δφ =ε̄ψ,

δφ̄ =εψ̄,

δψ =iγµεDµφ + εσφ +
2∆i
3

γµDµεφ + ε̄F

etc.

auxiliary

∆ = (anomalous) dimension of Φ
= 1/2 if N ≥ 3
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S =
∫

S3
d3x
√

g

(
Dµφ̄Dµφ +

3
4r2

φ̄φ− iψ̄γµDµψ + F̄F + couplings to VM
)

Action of chiral multiplet coupled to N=2 VM for

∫
dnx

√
g

(
gµν∂µφ∂νφ +

1
4

n− 2
n− 1

Rφ2

)
R :  scalar curvature

This is the conformal coupling to gravity, required for 
conformal invariance of the scalar field on a curved space. In 

general we have

∆ =1 /2

For non-canonical dimensions, the coupling to curvature is 
fixed by supersymmetry [Jafferis]

∆(2−∆)
r2

φ̄φ
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ABJM theory is then obtained as follows:

1) two U(N) VMs with super Chern-
Simons actions and opposite couplings

2) four chiral multiplets in the 
bifundamental rep of U(N)xU(N)

V (1), V (2)

Φab
i , i = 1, · · · , 4

3) a superpotential for the chiral fields

W =
4π

k
tr

(
Φ1Φ†

2Φ3Φ†
4 − Φ1Φ†

4Φ3Φ†
2

)
,

U(N) U(N)

k −k

Φ1,3

Φ†
2,4
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Some properties of ABJM theory

1) it is a conformal field theory [Gaiotto-Yin] with N=6 
supersymmetry (i.e. 24 supercharges) [ABJM] 

2) it describes the gauge theory for N M2 branes on  C4/Zk

[building on Bagger-Lambert, Gustavsson]

3) it has a large N string/M-theory dual [Maldacena 1998] 

notice that k is quantized, so it cannot run under a 
beta function if the theory is consistent
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Large N duals I: M-theory

Background: AdS4 ×X7 X7 = S7/Zk

Metric: ds2
11 = L2

X7

(
1
4ds2

AdS4
+ ds2

X7

)
,

(common) radius

In 11d sugra there are two bosonic fields: the metric and the 
C field (which is a 3-form). We also have a flux for C

F4 = dC =
3
8
L3

X7
ωAdS4

volume form

Exercise: show that this Freund-Rubin background solves 
the EOM of 11d sugra
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Remember that C couples to the M2 brane, therefore Gauss 
law gives

Q =
1

(2π"p)6

∫

X7

#11F4
charge of N 
M2 branes

This leads to the following relation between the radius and 
the number of M2 branes

1
k

(
L

!p

)6

= 32π2N

since at large N Q ! N

Exercise: derive an expression for the 4d Newton’s 
constant as a function of N, k
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We then have a dictionary between M-theory and ABJM 
theory: the coupling k is purely geometric, and the “size of the 

universe” grows with N

L/!p

L/!p ! 1 L/!p ! 1

Planckian sizes, strong 
quantum gravity effects

weak curvature, classical 
SUGRA is a good 

approximation

N large, k fixed
N small, k fixed

The natural expansion in M-theory is in powers of !p/L

This leads to the M-theory expansion of ABJM theory: a 1/N 
expansion at fixed k. This is not the ‘t Hooft expansion

“thermodynamic limit”
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Large N duals II: Type IIA theory
To make contact with IIA theory, we have to reduce M-theory 

on a circle, and for this we use the Hopf fibration of the 
seven-sphere [Nilsson-Pope 1984]

S1 −→ S7

↓
CP3

Type IIA theory has two parameters: the string coupling 
constant, and the ratio of L to the string length. After Hopf 

reduction one finds, 
(

L

!s

)4

= 32π2λ

gst =
1
k

(
L

!s

)
∝ λ5/4

N

λ =
N

k

‘t Hooft parameter

⇒ target AdS4 × CP3
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weak-strong interpolation

Sws ∼
L2

!2s
⇒ λ ∼ L4

!4s
∼ 1

!2
ws

g s
t

classical
SUGRAgauge

loops

∼ e−Ast(λ)/gst

spacetime loops,
spacetime instantons

λ = 0 λ! 1

worldsheet loops ∼ 1/
√

λ

worldsheet instantons
∼ e−

√
λ

1
N

qu
an

tu
m

SU
G

R
A

weight of quantum 
effects in the 

worldsheet theory
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The natural spacetime expansion in type IIA theory is the 
genus expansion (in powers of the string coupling constant) at 

a given curvature radius.  

In the gauge theory this corresponds precisely to the ‘t Hooft 
expansion.

We conclude that there are two possible expansions in the 
gauge theory, making contact with M-theory and type IIA 
theory, respectively. These expansions are a priori different. 

This is a new feature of ABJM theory which is absent from 
N=4 SYM, where there is no M-theory picture
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Our goal now is to test this large N duality, and in particular to 
understand the “number of degrees of freedom” in this theory. 

For this, we need an observable that probes this number.

Obvious guess: look at the thermal free energy. To calculate 
this, we should consider the path integral for field 

configurations living in the manifold 

M = R2 × S1
β thermal circle

Problem: this setting breaks supersymmetry, since bosons 
(fermions) have (anti)periodic boundary conditions. A strong 
coupling calculation in the gauge theory is out of reach with 

the current techniques

Free energies and degrees of freedom
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However, the free energy on any manifold is sensitive to the 
number of degrees of freedom, since at weak coupling

Z(M ;N) ∼ (Z(M ; 1))N2

⇒ F (M) ∼ O(N2)

We can then look at the free energy on the three-sphere. As 
we will show in a moment, the AdS dual predicts as well that, 

at strong coupling,

FABJM(S3) ∼ O(N3/2)

so this is a good quantity as well to understand the change in 
scaling. We will then focus on this quantity, see what is the 

precise AdS prediction for its strong coupling limit, and 
develop techniques for a first principle derivation from the 

ABJM gauge theory
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Moreover, there are very good reasons to think that this is in 
fact THE right quantity to measure the number of degrees of 

freedom in 3d QFTs: 

F-“theorem” [Jafferis, Klebanov, Pufu, Sachdev, Safdi 2011]: the free energy on the 
three-sphere (with a minus sign) decreases along RG flows and 

it is stationary at fixed points

Z-extremization [Jafferis]:  the anomalous dimensions of the matter 
fields, as a function of the parameters and couplings, can be 
obtained by extremizing the partition function (in absolute 

value) 
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AdS/CFT correspondence and strong coupling

We will need in a sense the most elementary consequence of 
the (Euclidean) AdS/CFT correspondence, namely equality of 

the partition functions [Witten1998]

ZABJM(M ;N, k) = ZM/string (AdS4 ×X7,6)

Here, M is a three-manifold, and we choose a realization of 
AdS such that 

∂(AdS4) = M

Of course, a similar equality holds for other 3d CFTs and for 
N=4 SYM, with the obvious changes. 
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In particular, the AdS/CFT correspondence predicts that the 
genus g free energy of the gauge theory, in the ‘t Hooft 

expansion, is equal to the genus expansion of the type IIA 
string theory:

FABJM(S3) = Fstring(AdS4 × CP3)

F string
g (λ) = λ3(g−1)/2FABJM

g (λ)
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Let us look at the M-theory picture for concreteness, and 
assume that N is very large. In that case, gravity is weakly 

coupled, and the semiclassical approximation (SUGRA) should 
give the leading behavior: 

ZM (AdS4 ×X7) ≈ e−I(AdS4)

classical gravity action evaluated 
on AdS, after reduction to 4d

I(AdS4) = − 1
16πGN

∫
d4x

√
G (R− 2Λ) Λ = − 6

L2

This should be evaluated on-shell, on the AdS metric

ds2 = L2
(
dρ2 + sinh2(ρ)dΩ2

3

)

metric on a unit radius  S3
radial direction 
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To understand this divergence, we can introduce a cutoff in 
the radial direction 

Problem: the result is divergent! This is easy to see 
if we use Einstein’s equation

Rµν = Λgµν ⇒ I =
3

8πGNL2
vol (AdS4)

vol (AdS4; ρ0) = L4vol(S3)
∫ ρ0

0
dρ (sinh ρ)3

= 2π2L4

[
1
12

cosh(3ρ0)−
3
4

cosh(ρ0) +
2
3

]

finite piece!

We can also use dimensional regularization to recover the 
same finite piece
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Exercise: compute the volume in d dimensions and show 
that the analytic continuation to d=3 produces the same finite 

piece [solution: Diaz-Dorn 0702163]

The divergences appearing in this calculation are well 
understood: they are simply the IR duals of the UV 

divergences in the CFT. They can be regulated directly in the 
gravity theory with a technique called holographic 

renormalization [Henningson-Skenderis, Balasubramanian-Kraus]

Keeping just this finite piece, and using the result for 4d 
Newton’s constant, we obtain

I =
πL2

2GN
=

π
√

2
3

k1/2N3/2
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The detailed procedure goes as follows: the full gravity action 
contains as well a boundary (or Gibbons-Hawking) term,

I = − 1
16πGN

∫

S
dn+1x

√
G (R− 2Λ)− 1

8πGN

∫

∂S
K|γ|1/2dnx,

γ : induced metric on the boundary

K : extrinsic curvature of the boundary

Both terms diverge, but one can find a universal set of boundary 
counterterms, which only depend on the induced metric, and 

lead to a finite result:

Ict =
1

8πGN

∫
dnx

√
γ

(
n− 1

L
+

L

2(n− 2)
R[γ] + · · ·

)
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Exercise: compute the bulk, boundary and counterterm action 
with a cutoff and show that all divergences cancel when the 
cutoff goes to infinity, leaving the finite result quoted above 

[solution: lecture notes, Emparan-Johson-Myers]

We conclude that

FABJM(S3) ≈ −π
√

2
3

k1/2N3/2

at large N and fixed k. Equivalently, the planar free energy should 
be given, at strong coupling, by 

FABJM
0 (λ) ≈ −π

√
2

3
1√
λ

λ! 1
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ABJM theory at weak coupling

We will now sketch the computation of the one-loop planar 
free energy of ABJM theory

Let us consider a free matter multiplet on the three-sphere. It 
has one conformally coupled complex scalar and two Weyl 

fermions. Its one-loop partition function is given by

Zmatter
1−loop(S3) =

det (−iD/ )
det ∆c

conformal Laplacian∆c = −∇µ∇µ +
3
4

This is also infinite, but we can regularize it with zeta-function 
techniques
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Let T be a self-adjoint operator with positive eigenvalues
   . Its zeta function is defined as

ζT (s) =
∑

n

λ−s
n

This converges for sufficiently large s, and defines a 
meromorphic function which is regular at s=0. A natural 

definition of the determinant of T is then

det(T ) = e−ζ′
T (0)

The spectrum of differential operators on spheres is explicitly 
known, and their zeta functions can be computed in detail. 

With some work one finds, 

Zmatter
1−loop(S3) =

1√
2

λn
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Exercise (long): calculate the spectrum and determinant of the 
conformal Laplacian and of the Dirac operator on the three-

sphere [solution: lecture notes]

The other ingredient in ABJM theory is CS theory. The one-
loop calculation of its partition function is much more subtle, 
but one can use as a shortcut the exact answer obtained by 

Witten in 1988

k ! 1

ZCS(S3) =
1

kN/2

N−1∏

j=1

(
2 sin

πj

k

)N−j

≈ k−N/2
N−1∏

j=1

(
2πj

k

)N−j

= (2π)
1
2 N(N−1) k−N2/2G2(N + 1)

Barnes function

G2(z + 1) = Γ(z)G2(z) G2(1) = 1
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log G2(N + 1) ≈ N2

2
log N − 3

4
N2, N →∞

We have to analyze this expression at large N. We can use 
the asymptotic expansion of Barnes function

FCS(S3) ≈ N2

2

(
log(2πλ)− 3

2

)
and finally

since ABJM theory =2 CS+ 4 matter multiplets in the 
bifundamental, we finally obtain

FABJM(S3) ≈ N2





log(2πλ)− 3

2︸ ︷︷ ︸
Chern-Simons

−2 log(2)︸ ︷︷ ︸
matter






number of degrees of freedom
at weak coupling

N, k ! 1

N, k ! 1
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We conclude that the planar free energy of ABJM 
theory on the three-sphere is a non-trivial function of 

the ‘t Hooft parameter, interpolating between the 
strong and weak coupling regions. Its strong coupling 

behavior displays the 
3/2 scaling in the number of degrees of freedom

− lim
N→∞

1
N2

FABJM(S3) ≈






− log(2πλ) + 3
2 + 2 log(2), λ→ 0

π
√

2
3
√

λ
, λ→∞

We now introduce a powerful technique which makes 
possible, in principle, to compute the interpolating 

function and the strong coupling behavior

Monday, February 6, 2012



Localization

Let us suppose that we have a field theory with a Grasmann 
symmetry      such thatQ

QS(φ) = 0

Q2 = LB bosonic symmetry

Let V be a Grasmann-valued functional of the fields, invariant 
under the bosonic symmetry. We will assume that 

(δV )B ≥ 0

[Witten 1980s]

[Nekrasov, Pestun]
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dZ

dt
= −

∫
Dφ δV e−S−tδV = −

∫
Dφ δ

(
V e−S−tδV

)
= 0

It is easy to see that Z does not depend on the value of t, at 
least formally

Z(t) =
∫
Dφ e−S−tδV

 Let us consider the perturbed partition function

Z(0)

Z(∞)

original quantity we want to 
calculate

“localized” on the locus in 
field space       where 

(δV )B = 0φc
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Another way to think about this: calculate the path integral 
for t large by saddle point

but Z(0) = Z(∞) , therefore 

This looks like black magic, but it leads to well-established 
mathematical theorems, like Duistermaat-Heckmann or 

Poincare-Hopf (including all details)

Z(t) ∝
∫

dφc

(
2π

(δV )′′ (φc)

)1/2

e−S(φc)

(
1 +O

(
1
t

))

Z(0) ∝
∫

dφc

(
2π

(δV )′′ (φc)

)1/2

e−S(φc) One-loop is exact!
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Localizing (super) Chern-Simons theory

We will now apply this localization technique to super Chern-
Simons theory [Kapustin-Willett-Yaakov 2009]. Consider the Grassmann 
symmetry     defined by              . By looking at the SUSY 

transformations, it is easy to check that
Q

Now we have to pick a V. It turns out that the super-Yang-
Mills action can be written as 

SSYM = QV

and indeed its bosonic part is positive definite.  

Q2 = 0

δε = εQ
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We then look at the deformed partition function 

ZSCS(t) =
∫

DA · · · Dσ e
ik
4π SSCS−tSSYM

The bosonic part of the super-Yang-Mills action vanishes for

Fµν = 0, Dµσ = 0, D +
σ

r
= 0

The first equation says that the gauge connection is flat. 
But on a three-sphere the only flat connection is the 

trivial one, so Aµ = 0

The second and third equations 
imply that 

σ = σ0 = constant

D = −σ0

r
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All bosonic fields are constant! The path integral reduces 
to an ordinary (matrix) integral!

Now we evaluate the super-Chern-Simons action on the 
localizing locus, to obtain

SSCS = − ik
4π

∫

S3
d3x
√

gtr (2D(σ0)σ0) =
ik

2πr
tr

(
σ2

0

)
vol(S3)

Finally, we have to evaluate the one-loop contribution coming 
from quadratic fluctuations around the localizing locus. We 
rescale the fields to have canonical kinetic terms for the 

fluctuations

σ = σ0 +
1√
t
σ′

D = −σ0

r
+

1√
t
D′

A, λ→ 1√
t
A,

1√
t
λ
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The relevant part of the quadratic fluctuations is 

1
2

∫

S3

√
g d3x tr

(
−Aµ∇2Aµ − [Aµ, σ0]2 + iλ̄γµ∇µλ + iλ̄[σ0, λ]− 1

2
λ̄λ + · · ·

)

One important technical point is that, in order to compute 
the path integral, we have to fix the gauge. A standard choice 

is the covariant Feynman gauge 

D, σ

∇µAµ = 0

We have to introduce Faddeev-Popov ghosts, but it can be 
seen that the contribution of these fields at one loop 

cancels exactly the contribution of the          fields. The 
integration over      is restricted then to transverse vector 

fields. 
Aµ

transverse vector field

(r = 1)
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ZSCS(S3) ∝
∫

dσ0 eikπtr(σ2
0)

(
det

(
−∇2 + [σ0, ·]2

))−1/2 det
(

iD/ − 1
2

+ i[σ0, ·]
)

Schematically we find

adjoint action

This is what is called a matrix model, since we are integrating 
over a Hermitian matrix     . It has the residual “gauge” 

symmetry
σ0

σ0 → Uσ0U
†

The most useful gauge choice in matrix models is the 
Abelian or diagonal gauge, in which we set

2πσ0 = diag (µ1, · · · , µN )

U ∈ U(N)

(r = 1)
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Finally, one has to perform the calculation of the 
determinants, which can be done again with zeta-function 

regularization, and is left as an Exercise. The result is 

∏

i<j

(
2 sinh(µi−µj

2 )
µi − µj

)2

But in going to the diagonal gauge one inherits a “Faddeev-
Popov determinant,” due to integrating out the off-diagonal 
elements of the matrix. This is simply a square Vandermonde 

determinant

∆2(µ) =
∏

i<j

(µi − µj)2
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We finally obtain gs =
2πi
k

This is the so-called Chern-Simons matrix model [M.M. 2002]. The 
overall constant is fixed by the following requirement: in super 

CS theory, all the fields except the gauge connection are 
auxiliary. Therefore, the above partition function should be 

identical to the partition function of bosonic CS theory on the 
three-sphere. 

ZSCS

(
S3

)
=

i−N2
2

N !

∫ N∏

i=1

dµi

2π

∏

i<j

(
2 sinh

µi − µj

2

)2

e−
1

2gs

PN
i=1 µ2

i

Exercise: use Weyl’s denominator formula to calculate the 
above integral for finite, and check that it reproduces the result 

of Witten [solution: lecture notes]
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Localizing Chern-Simons-matter theories

We can easily add matter in this framework [Kapustin-Willett-Yaakov 

2009, Jafferis & Hama-Hosomichi-Lee 2010]. It turns out that the matter 
Lagrangian can be written as

Smatter = QVmatter

We now modify the Lagrangian by introducing a parameter

−t′Smatter

We can restrict the calculation to the localizing locus of the 
gauge sector. The original calculation is for           , but we can 
use the independence w.r.t.    to do it at            . The localizing 

locus is    

t′ = 1
t′ t′ =∞

φ = 0
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We have then to compute the one-loop determinants due 
to fluctuations of the chiral multiplet. The quadratic terms 

are given by 

Lφ =gµν∂µφ̄∂νφ + φ̄σ2
0φ +

2i(∆− 1)
r

φ̄σ0φ +
∆(2−∆)

r2
φ̄φ

Lψ =− iψ̄γµ∂µψ + iψ̄σ0ψ −
∆− 2

r
ψ̄ψ.

We use again zeta function regularization for this computation. 
The final result is simple for fields with canonical dimension in 

self-conjugate representations:

∏

Λ

(
2 cosh

Λ(µ)
2

)−1/2

weights of the representation
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Example: 1 bifundamental + conjugate

∏

i,j

(
2 cosh

(
µi − νj

2

))−1

Example: 1 fundamental + conjugate

∏

i

(
2 cosh

(µi

2

))−1
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Localizing ABJM theory

2 SCS theories+ 4 multiplets

ZABJM(S3) =
1

N !2

∫ N∏

i=1

dµi

2π

dνi

2π

∏

1≤i<j≤N

(
2 sinh

(
µi − µj

2

))2

×
∏

1≤i<j≤N

(
2 sinh

(
νi − νj

2

))2 ∏

i,j

(
2 cosh

(
µi − νj

2

))−2

e−
1

2gs
(P

i(µ
2
i−ν2

i ))

µi, νi

This can be trivially generalized to the case in which the CS 
nodes have different rank. Overall factors are fixed by 

comparing to weak-coupling analysis. We will call this the ABJM 
or KWY [Kapustin-Willett-Yaakov] matrix model.

One can write down similar expressions for other N=3 CS-
matter theories
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Localizing N=4 SYM

It turns out that a similar analysis can be made for N=4 SYM 
on the four-sphere [Pestun 2007]. However, the result is much 

simpler

ZN=4 SYM(S4) ∝
∫

dσ0 exp
(
−4π2r2

g2
YM

tr(σ2
0)

)

This is just the Gaussian matrix model. It only contains 
information about the conformal anomaly, and there is no non-
trivial weak-strong coupling interpolation. The result becomes 

however non-trivial when one includes Wilson loops
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Calculating at large N

Coming back to ABJM theory, we have reduced our problem 
drastically, from a field theory path integral to a matrix 
integral. Still, the latter is quite complicated and it is not 

obvious how to extract the large N physics from it.

1) ‘t Hooft expansion: use standard large N technology from 
matrix model theory [Brezin-Itzykson-Parisi-Zuber 1978...]. Exact results for 

the free energies at all genera can be obtained in this way 
[Drukker-M.M.-Putrov 2010] These technology is however hard to 

generalize to other CS-matter theories (although it has been 
done in some cases)

This approach captures all      corrections, including 
worldhseet instantons

α′
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2) M-theory expansion: two techniques have been introduced 
to understand this limit

2.a) density functional approach [Herzog-Klebanov-Safdi-Pufu, Martelli-Sparks, ...]: 
very general and powerful. It only captures the leading large N 

behavior

2.b) Fermi gas approach [M.M.-Putrov 2011]: captures the full 1/N 
expansion, but it is more effective for            theories. 

Density functional approach appears as the Thomas-Fermi 
approximation to the Fermi gas. Gives information also on 

non-perturbative effects in M-theory

N ≥ 3

I will focus here on the Fermi gas approach to ABJM theory, 
since it uses very elementary and intuitive physics
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Two technical ingredients:

1) Cauchy identity:

∏
i<j

[
2 sinh

(
µi−µj

2

)] [
2 sinh

(
νi−νj

2

)]

∏
i,j 2 cosh

(
µi−νj

2

) =
∑

σ∈SN

(−1)ε(σ)
∏

i

1

2 cosh
(

µi−νσ(i)
2

)

2) elementary Fourier transform:

∫
dσ

e2πiση

cosh(πσ)
=

1
cosh(πη)

M-theory expansion:

ABJM theory as a Fermi gas
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This makes possible to write the ABJM matrix model as

ZABJM(N) =
1

N !

∑

σ∈SN

(−1)ε(σ)

∫
dNx

N∏

i=1

ρ
(
xi, xσ(i)

)

ρ(x, x′) =
1

2πk

1
(
2 cosh

(
x
2

))1/2 (
2 cosh

(
x′

2

))1/2

1
2 cosh

(
x−x′

2k

)

Exercise: derive this formula [essentially in Kapustin-Willet-Yaakov 2010]

Claim: this is the canonical partition function of an ideal Fermi 
gas in one dimension with a non-trivial one-particle 

Hamiltonian
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Remember that the canonical density matrix for N 
distinguishable particles is defined as

β = 1

If we have indistinguishable fermions, we have to use the 
projection operator

ρD({x1, · · · , xN}, {x′1, · · · , x′N}) = 〈x1, · · · , xN |e−ĤN |x′1, · · · , x′N 〉

Hamiltonian N-particle system

P =
1

N !

∑

σ∈SN

(−1)ε(σ)σ

to obtain the antisymmetrized density matrix [Tomonaga, Feynman ]

ρ({x1, · · · , xN}, {x′1, · · · , x′N}) = 〈x1, · · · , xN |P e−ĤN P |x′1, · · · , x′N 〉

=
1

N !

∑

σ∈SN

(−1)ε(σ)ρD({x1, · · · , xN}, {x′σ(1), · · · , x′σ(N)})
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If the particles do not interact (i.e. the Hamiltonian is the sum 
of N one-particle Hamiltonians) the density matrix factorizes:

ρD({x1, · · · , xN}, {x′
1, · · · , x′

N}) =
N∏

i=1

ρ(xi, x
′
i)

ρ(x, x′) = 〈x|e−Ĥ |x′〉

For an ideal Fermi gas, therefore, the partition function can be 
written as

Z(N) =
∫

dNx ρ ({x1, · · · , xN}, {x1, · · · , xN})

=
1

N !

∑

σ∈SN

(−1)ε(σ)

∫
dNx

N∏

i=1

ρ(xi, xσ(i))
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We just have to extract the one-particle Hamiltonian from 
our formula

ρ̂ = e−
1
2 U(q̂)e−T (p̂)e−

1
2 U(q̂)

U(q) = log
(
2 cosh

q

2

)
, T (p) = log

(
2 cosh

p

2

)

are position and momentum operatorsq̂, p̂

[q̂, p̂] = i!, ! = 2πk

with

H = log
(
2 cosh

p

2

)
+ log

(
2 cosh

q

2

)
+O(!2)

and we find, at leading order in   !
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!4 !2 2 4

0.5

1.0

1.5

2.0

2.5

log
(
2 cosh

x

2

)

|x|/2 H ≈ |p|
2

+
|q|
2

an ultrarrelativistic  Fermi  
gas in a linearly confining 

potential  

The large N limit is just the thermodynamic limit. As usual 
in ideal quantum gases, it is more convenient to use the 

grand canonical ensemble 

at large energies  

J(µ) = log

(
1 +

∞∑

N=1

Z(N)zN

)
, z = eµ

chemical potential 
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Review of elementary StatMech

N =
∂J

∂µ
Legendre transform

F (N) ≈ J(µ(N))− µ(N)N, N # 1

Use occupation numbers to calculate N

Fermi occupation 
number

N =
∫ ∞

0
dE

ρ(E)
eE−µ + 1

≈
∫ µ

0
dE ρ(E) = n(µ)

density of states

large E and fugacity
(zero temperature 

approximation)

number of states 
with energy up to 

µ
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Semiclassically, 

n(µ) =
1

2π!
Volume of phase 

space with energy
 ≤ µ

=
1

2π!
Area of Fermi 

surface 

!200 !100 0 100 200
!200

!100

0

100

200

2µ

2µ

Fermi  
surface

n(µ) ≈ 2µ2

π2k

J(µ) ≈ 2µ3

3π2k

F (N) ≈ −
√

2π

3
N3/2k1/2

|p|
2

+
|q|
2
≤ µ

YES!
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This is a leading semiclassical computation (i.e. at leading 
order in k), but the thermodynamic limit is semiclassical, so 

it gives the right large N behavior

Using essentially the WKB method, it is possible to 
calculate systematically the corrections to the semiclassical 

limit

J(µ) =
2µ3

3kπ2
+ µ

(
1
3k

+
k

24

)
+ A(k) +O

(
µ2e−2µ

)
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To go beyond the large N result, we have to remember that 
the Legendre transform relating the canonical and the 
grand-canonical potentials is just the saddle, large N 

approximation to an integral

Z(N) =
1

2πi

∫
dµ exp [J(µ)− µN ]

Calculating corrections to the saddle leads to an expansion 
to all orders in 1/N

Airy function originally [Fuji, Hirano, Moriyama]

ZABJM(N) ∝ eA(k)Ai

[(
π2k

2

)1/3 (
N − 1

3k
− k

24

)]
+O

(
e−
√

Nk
)
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‘t Hooft expansion and interpolating function
The ABJM matrix model can be used to study the partition 
function of the gauge theory in the ‘t Hooft expansion, in a 

much simpler way (we have now a matrix integral!). At 
weak ‘t Hooft coupling we can calculate, in perturbation 

theory around the Gaussian model, 

F0(λ) = log(2πλ)− 3
2
− 2 log 2− π2λ2

9
+

283π4λ4

5400
− · · ·

two loops three loops

As we explained at the beginning of these lectures, we have 
to resum this expansion in the matrix model in order to 

understand the strong coupling limit. 
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The resummation of this expansion in matrix models was 
pioneered by [Brezin-Itzykson-Parisi-Zuber 1978]. I will now sketch their 

method.

Z =
1

N !
1

(2π)N

∫ N∏

i=1

dλi ∆2(λ)e−
1

gs

PN
i=1 V (λi)

Let us consider the partition function of a matrix model 
with one single set of eigenvalues

potential 
(one-body)Vandermonde 

(two-body)

In the ‘t Hooft expansion, we fix t = gsN
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including the Vandermonde term in an “effective” action for 
the eigenvalues, we find 

Z =
1

N !

∫ N∏

i=1

dλi

2π
eg−2

s Seff(λ)

attractive 
potential

“eigenvalue 
repulsion”

Seff(λ) = − t

N

N∑

i=1

V (λi) +
2t2

N2

∑

i<j

log |λi − λj |
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V (x) =
x2

2

N

In the ‘t Hooft regime of a matrix integral, there are two 
competing effects: eigenvalues want to be at the minimum of 

the potential, but since they repel each other, they spread out 
over a finite interval

The equilibrium positions for the eigenvalues satisfy the saddle-
point equation

1
2t

V ′(λi) =
1
N

∑

j "=i

1
λi − λj
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When N is large, the eigenvalues become dense in a finite 
interval, and they are described by a density of eigenvalues

ρ(λ) =
1
N

N∑

i=1

δ(λ− λi) −→ ρ0(λ)
N →∞

In terms of this density of eigenvalues,

F0(t) = −1
t

∫

C
dλ ρ0(λ)V (λ) +

∫

C×C
dλ dλ′ ρ0(λ)ρ0(λ′) log |λ− λ′|

support of the density

∫
dλ ρ0(λ) = 1 normalization
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The density can be obtained from the large N limit of the 
equilibrium equation, which is a singular integral equation 

1
2t

V ′(λ) = P
∫

C
dλ′ ρ0(λ′)

λ− λ′

principal part

For the simplest case (the Gaussian matrix model) one finds, 
for example,

ρ0(λ) =
1

2πt

√
4t− λ2

which means that at large N the eigenvalues “condense” along 
the cut

(−2
√

t, 2
√

t)
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The case of the original ABJM matrix integral is a little different, 
since there are two sets of eigenvalues. However, the above method 

can be adapted. The saddle-point equations are of the form:

µi

gs
=

∑N1
j !=i coth µi−µj

2 −
∑N2

a=1 tanh µi−νa

2 ,

−νa

gs
=

∑N2
b !=a coth νa−νb

2 −
∑N1

i=1 tanh νa−µi

2

However, it is more convenient to write the equations in the 
more symmetric form

µi = t1
N1

∑N1
j !=i coth µi−µj

2 + t2
N2

∑N2
a=1 tanh µi−νa

2 ,

νa = t2
N2

∑N2
b !=a coth νa−νb

2 + t1
N1

∑N1
i=1 tanh νa−µi

2 ,

ti = gsNi

The original situation can be recovered at the end of the day 
by setting t2 → −t2
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The resulting equations were analyzed in the context of a 
closely related model, the so-called lens space matrix model 

which appears in the analysis of pure bosonic CS theory on a 
lens space L(2,1) [M.M., Aganagic-Klemm-M.-Vafa]

ZCS(L(2, 1)) =
1

N1!N2!

∫ N1∏

i=1

dµi

2π

N2∏

a=1

dνa

2π

∏

1≤i<j≤N1

(
2 sinh

(
µi − µj

2

))2

×
∏

1≤a<b≤N2

(
2 sinh

(
νa − νb

2

))2 ∏

i,a

(
2 cosh

(
µi − νa

2

))2

e−
1

2gs
(P

i µ2
i +

P
a ν2

a)

With some work, one can calcuate the densities of eigenvalues 
for this model

ρ1(µ) =
1

πt1
tan−1

[√
α− 2 cosh µ

β + 2 cosh µ

]

The parameters         are fixed by normalization  

ρ2(ν) =
1

πt2
tan−1

[√
β − 2 cosh ν

α + 2 cosh ν

]

α,β
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To recover ABJM theory, we must require

and both purely imaginary. This fixes

t1 = −t2

α = 2 + iκ, β = 2− iκ, κ real

λ(κ) =
κ

8π
3F2

(
1
2
,
1
2
,
1
2
; 1,

3
2
;−κ2

16

)
One eventually finds from the above equations

∂λF0(λ) =
κ

4
G2,3

3,3

(
1
2 , 1

2 , 1
2

0, 0, − 1
2

∣∣∣∣−
κ2

16

)
+ 4π3iλ(κ)

here we used a slightly different 
normalization for the free energy:

FABJM(S3) = g−2
s F0(λ) + · · ·
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∂λF0(λ)

λ

The analytic structure of the planar free energy is as 
expected: there is a finite radius of convergence around the 

origin, controlled by the singularity at 

κ2 = −16

which leads to branch cut singularities along the imaginary axis 
in the     plane. Therefore, analytic continuation to large ‘t 

Hooft coupling is possible! 
λ
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A detailed analysis of this planar solution shows that its strong 
coupling limit is given by 

F0 = −
√

2π

3
k1/2

(
N − k

24

)3/2

+O
(
e−
√

N
k

)

∼ O
(
e−L2/α′

)
worldsheet instantons!

CP3

CP1

In contrast, in the M-theory expansion we obtained

F = −
√

2π

3
k1/2

(
N − 1

3k
− k

24

)3/2

+O(1/N) +O
(
e−
√

kN
)

∼ O
(
e−L3/!3P

)

in type IIA, genus 
one correction membranes
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