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① Introduction 

    What is the entanglement entropy (EE) ? 

        A measure how much a given quantum state is 

       quantum mechanically entangled (~complicated).  

             […..We will explain more later, of course.] 

 

     Why interesting and useful ? 

          At present, it looks very difficult to observe EE      

        in real experiments (→ a developing subject).              

     But, recently it is very common to calculate EE  

         in `numerical experiments’ of cond-mat systems.  

                             Classification of Quantum Phases 

 



 

• EE = `Wilson loops’ in quantum many-body systems 

                 A quantum order parameter 

 

 

• The entanglement entropy (EE) is a helpful bridge 
between  gravity (string) and cond-mat physics.  

 

     Gravity                Entanglement         Cond-mat. 

                                                                          systems 

 

 
 

g AreaAS    AdS/CFT 
(Holography) 



Density matrix formalism 

For a pure state,  using the wave function        ,  

the density matrix is given by                        .  

 

We can express the physical quantity as  

 

 

In a generic quantum system such as the one at finite  

temperature, it is not a pure state, but is a mixed state. 

  e.g.                           for the canonical ensemble.  
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(1-1) Definition of entanglement entropy 
 
Divide a quantum system into two parts A and B. 
The total Hilbert space becomes factorized: 
 
 
 
 
 
 
Define the reduced density matrix       for A  by 
 
 
Finally, the entanglement entropy (EE)       is defined by 
  
                                                            (von-Neumann entropy) 
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The Simplest Example: two spins (2 qubits) 



Note:  The standard thermal entropy is obtained as  

              a particular case of EE:   i.e. A=total space. 
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EE in QFTs 

 

In QFTs,  the EE is defined geometrically  

(called geometric entropy).  

 

 

 

 

 

 

BA B A

slice   time:N

.   BAtot HHH 



Historical origin: an analogy with black hole entropy 
                    [’t Hooft 85, Bombelli-Koul-Lee-Sorkin 86,  Srednicki 93, …]                                                  

Because  EE is defined by smearing out the Hilbert space for B, 
                    

              E.E. ~ `Lost Information’ hidden in B 
 
This origin of entropy looks similar to the black hole entropy.  
 
  
  
 
     
         The boundary region           ~  the event horizon ? 
 
As we will explain,  a complete answer to this historical question  
is found by considering the AdS/CFT correspondence !               

? ?Horizon

observerAn 



(1-2)  Basic Properties of EE 

 

(i) If         is a pure state (i.e.                    ) and                        

     then 

 

[Proof]   

This follows from the Schmidt decomposition: 

 

,BAtot HHH 

⇒ EE is not extensive ! 



(ii) Strong Subadditivity (SSA)  [Lieb-Ruskai 73] 

      When                                 for any        , 

 

 

 

 

Actually, these two inequalities are equivalent .  

 

    We can derive the following inequality from SSA: 
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The strong subadditivity can also be regarded as  

the concavity of von-Neumann entropy.  

 

Indeed, if we assume A,B,C are numbers, then  
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Mutual Information 

 

We can define a positive quantity I(A,B) which  

measures an `entropic correlation’ between A and B: 

 

 

This is called the mutual information. 

 

The strong subadditivity leads to the relation: 
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(iii) Area law  
 

EE in QFTs includes UV divergences.  
 

The leading divergent term of EE in a (d+1 ) dim. QFT is 

 proportional to the area of the (d-1) dim. boundary         :  

 

 

                                      

where       is a UV cutoff (i.e. lattice spacing). 

 

Intuitively, this property is understood like:   
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Comments on Area Law 
 
• The area law can be applied for ground states or  
   finite temperature systems. It is violated for highly     
   excited states.  (Note                                              .)     
 
• There are two exceptions: 
 
    (a)  1+1 dim.  CFT 
 
 
    (b)   QFT with Fermi surfaces (                ) 
 
 
 
 

A 

B A B 
[Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04] 

[Wolf 05, Gioev-Klich 05] 



This logarithmic behavior of EE in the presence of Fermi  

surfaces can be understood if we note that we can  

approximate the excitations of Fermi liquids  by an  

infinite copies of 2 dim. CFTs. 
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• The proof of area law is available only for free field     
  theories.  [e.g. Plenio-Eisert-Dreissig-Cramer 04,05] 

 

• The AdS/CFT predicts the area law for strongly interacting  
 theories as long as the QFT has a UV fixed point. 
 
• The UV divergence cancels out in the mutual information. 
  
    
 
          
 
 

 
 
 
 

A B 



.
4

on)Area(horiz

N

BH
G

S 

 
• The area law resembles the Bekenstein-Hawking formula 
of black hole entropy:  
 

 
   
Actually, the EE can be interpreted not as the total but as a 
partial (i.e.  quantum corrections) contribution to the black 
hole  entropy.   [Susskind-Uglm 94] 

          
        A more complete understanding awaits the AdS/CFT ! 
 
 
 

 
 



(iv) Relation to Thermal Entropy 

 

•   At high temp., the finite part of EE is dominated by 

  thermal entropy:  

 

 

•   If we set A=total space, B=empty,  then we should  

   get the total thermal entropy.   

      More precisely, we have  

 

 

 

 



(v) Renyi entropy and entanglement spectrum 

 

Renyi entropy is defined by 

 

 

This is related to EE in the limit                                  . 

 

If we know          for all n,  we can obtain all eigenvalues  

of        .  They are called the entanglement spectrum. 

 



(1-3) Applications of EE to condensed matter physics 

 

            Log[``Effective rank’’ of density matrix for A]  

   ⇒ This measures how much we can compress  

              the quantum information of         . 

 

   Thus, EE  estimates difficulties of computer simulations  

such as in DMRG etc.   [Osborne-Nielsen 01, …] 

 

   Especially, EE gets divergent at the quantum phase  

transition point (= quantum critical point).   

    ⇒ EE = a quantum order parameter ! 



Ex.  Quantum Ising spin chain  
                             

Ｔhe Ising spin chain with a transverse magnetic field: 
 

 

 

 

 

 

 

                        

 

 

 

                                   [Vidal-Latorre-Rico-Kitaev 02, Calabrese-Cardy 04] 
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Topological Entanglement Entropy 
 

In a 2+1 dim. mass gapped theory,  EE behaves like 

 

    

 

The finite part                            is invariant under smooth  

deformations of the subsystem A.  ⇒ Topological ! 
  

• Top. EE offers us an order parameter of topological systems. 

      (cf.  correlation functions ) 

• To eliminate divergences, equally we have  

     

 

[Kitaev-Preskill 06,  Levin-Wen 06] 
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Summary 
 
(1)   EE is the entropy for an observer who is only accessible to the 

subsystem A and not to B.   
                  EE measures the amount of quantum information. 
          
(2) EE is a sort of a `non-local version of correlation functions’, 

which captures topological information.  (cf. Wilson loops) 
                  EE can be a quantum order parameter. 
 
(3)  EE is proportional to the degrees of freedom. 
       It is non-vanishing even at zero temperature.  

              EE is a useful observable in numerical calculations of   

                  quantum many-body systems. 
                   Indeed, a practical numerical method to read off  
                   the central charge of a given spin chain is to look at EE. 



③ Calculations of EE in QFTs    

  A basic method of calculating EE in QFTs is so called  

 the replica method. 

 

 

 

(3-1) 2d CFT 

 By using this, we can analytically compute the EE in  

2d CFTs.     [ Holzhey-Larsen-Wilczek 94,…, Calabrese-Cardy 04] 

The replica method is also an important method to  

(often numerically) evaluate EE in more general QFTs.   



 In the path-integral formalism, the ground state wave  

  function          can be expressed in the path-integral  

formalism as follows: 
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Finally, we obtain a path integral expression of the trace 

                                                            as follows:                  kaAbcAabA
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In this way, we obtain the following representation 

 

 

 

where         is the partition function on the n-sheeted  

Riemann surface      .  
 

To evaluate          , let us first consider the case where  

the CFT is defined by a complex free scalar field     . 
 

It is useful to introduce n replica fields   

on a complex plane                 .                  
 

 

 

c=2 



Then we can obtain a CFT equivalent to the one on 

by imposing the boundary condition  

 

 

 

 

 

 

 

 

By defining                                  , conditions are diagonalized 
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Using the orbifold theoretic argument, these twisted  

boundary conditions are equivalent to the insertion of   

(ground state) twisted vertex operators at z=u and  z=v. 

 

This leads to  
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For general 2d CFTs with the central charge c , we can  

apply a similar analysis. In the end, we obtain  

 

 

 

In the end, we obtain 

 

 

 

Note: the UV cut off a is introduced such that  
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General CFTs  

 

Consider the conformal map: 

 

 

[Calabrese-Cardy 04] 
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More general results in 2d CFT  
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Finite size system at finite temp.  (2D free fermion c=1)       

                                                                     [Azeyanagi-Nishioka-TT 07] 
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Entropic C-theorem   [Casini-Huerta 04] 

 

Consider a relativistic QFT.   

We have 

 

 

We set  

t 

x 

Light cone 



(3-2) Higher dimensional CFT 

 

We can still apply the replica method: 

 

 

 

However, in general, there is no analytical way to  

calculate       .    (`Twist operators’ get non-local !) 

Thus in many cases, numerical calculations are needed. 

           

      One motivation to explore the holographic analysis ! 



(3-3) EE in even dim. CFT and Central Charges 

Consider the dependence of EE on the size    of the  

subsystem A.  This is directly related to the Weyl anomaly:  

 

 

 

2d CFT 

 

 

 

l



4d CFT   (There are two central charges a and c) 

 

 

 

By integrating w.r.t.  the linear size     of A,  we obtain  

 

 

 

l

We assumed that the extrinsic curvatures are vanishing. 

[Ryu-TT 06] 



Comments 

• The full expression of the coefficient of log term is obtained as 

 

 

by employing the holographic EE [Solodukhin 08, Hung-Myers-Smolkin 11]. 

 

• When A is a round ball with the radius     , 

 

 

 

 

 

 

•           is expected to satisfy the c-theorem. [Cardy 88, Myers-Sinha 10] 

l

A 
[Ryu-TT 06, Solodukhin 08,10,  Lohmayer-Neuberger-
Schwimmer-Theisen 09,  Dowker 10, Casini-Huerta, 10,  
Myers-Sinha 10, Casini-Hueta-Myers 11]  



(3-4) EE in CFT and Thermal Entropy 
                                                                                          [Casini-Huerta-Myers 11] 

When A = a round ball, we can relate the EE in CFT to a  

thermal entropy in the de-Sitter space: 

 

 

Coordinate  
transformation 

de Sitter space (static cord.) 



A 



Comments 

• We can also relate EE in CFT to a thermal entropy on                 :  

 

 

 

 

 

 

 

• In topological theories, this leads to `bulk-edge correspondence’:  

 Entanglement spectrum in bulk =  Physical spectrum on edge 
                                                                              [Li-Haldane 08,  Swingle-Senthil 11]   
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④ A Quick Introduction to Holography and AdS/CFT 

(4-1) What is ``Holography’’ ? 

 

In the presence of gravity, 

 

 A lot of massive objects 

 in a small region                            

 

The information hidden inside BHs is measured by 

the Bekenstein-Hawking black hole entropy:   
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This consideration leads to the idea of entropy bound: 

 

                                                             

 

       (S(A) = the entropy in a region A) 

             

              The degrees of freedom in gravity are 
proportional  to the area instead of the volume ! 

 

 cf.  In non-gravitational theories, the entropy is   

    proportional to volume. 
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Motivated by this, holographic principle has been  

proposed *‘t Hooft 93 and Susskind 94]: 

 

         

                               Holographic Principle 
 
(d+2) dimensional                (d+1) dimensional  
Quantum gravity               Non-gravitational theory 
                                                    (e.g. QM, QFT, CFT, etc.) Equivalent 

Often, lives on the boundary  
  of (d+2) dim. spacetime 
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(4-2) AdS/CFT Correspondence 
 

The best established example of holography is  

the AdS/CFT correspondence [1997 Maldacena]: 
 

 

    Gravity (String Theory) on AdSd+2   =   CFT on Rd+1  
 

 

   Isometry of AdSd+2 = SO(d+1,2)  =  Conformal Sym. 
 
   

 

 
  

AdS/CFT 



AdS spaces 

 

They are homogeneous solutions to the vacuum Einstein  

equation with a negative cosmological constant: 
 

 

 

The metric of AdSd+2 (in Poincare coordinate) is given by  
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A Sketch of AdS/CFT 

 

 

 

 

 

 

 

 

The radial direction z corresponds to the length scale  

 in CFT under the RG flow. 

 

Note: String (or M) theory is 10 (or 11) dim. ⇒  

 

2dAdS  :Bulk 

  1dCFT  :Boundary 

1z   IR  UV
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CFT (conformal field theory) 
 

⇒Typically SU(N) gauge theories in the large N limit. 
 

e.g.  Type IIB String on AdS5×S5  
                 =  N=4  SU(N) Super Yang-Mills  in 4 dim. 
 
 
 
 
 
 
 
 

                  Symmetry of S5  ⇔ SO(6) R symmetry 
 
                                                                  

 
                                  
 
 



Discovery of AdS/CFT in String Theory  ex. AdS5/CFT4 

 

 

 

 

10 dim. type IIB string theory 
     with N D3-branes 

N D3-branes  
= (3+1) dimensional  sheets 

Open Strings between D-branes 
 → SU(N) gauge theories  

Type IIB closed string on AdS5×S5 
→  Gravity on AdS5 spacetime 

Equivalent ! 



SYM  SU(N)  4N 4D    SAdSon    string IIB 5

5 

      (i)  small quantum gravity corrections = large N CFT  
      (ii)  small stringy corrections = strong coupled CFT 
  
In this lecture, we mainly ignore both of these corrections.  
Therefore we concentrate on strongly coupled large N CFT. 



(4-3) Bulk to boundary relation 

The basic principle in AdS/CFT to calculate physical  

quantities is the bulk to boundary relation [GKP-W 98]: 

 

 

 

 

Gravity theories includes metric, scalar fields, gauge fields etc… 
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(4-4) Basic Deformations of AdS/CFT 
 

AdS/CFT can be naturally generalized to the duality: 

asymptotically AdS spaces ⇔ QFTs with UV fixed points . 
 

 

 

                                                                                                       cap off 

 

     

             Pure AdS                    AdS BH                           AdS Soliton 

 

             CFT at T=0            Finite temp. CFT     QFT with Mass gap 

                                              SBH∝N2                                       (confinement) 
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(4-5) Information in AdS ? 
  

A Basic Question:  Which region in the AdS does  

encode the `information in a certain region’ of the CFT ?  
      

          

        

 

Region A in CFTd Region XA in AdSd+1     

Dual ? 

B 

A XA 

AdSd+1 

The entanglement entropy  SA  provides us  
a definite measure of the amount of information !  



(5-1) Holographic Entanglement Entropy Formula    
                                                                                                                [Ryu-TT 06] 
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⑤ Holographic Entanglement Entropy (HEE)   
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Motivation of this proposal 

Here we employ the global coordinate of AdS space and  

take its time slice at t=t0.  

 

 

 t 

 

                      t=t0 

Coordinate globalin 

AdS 2d

AB A???
observerAn 

The information in B 
is encoded here. 



Leading divergence and Area law 

For a generic choice of       ,  a basic property of AdS gives 

 

 

 

where R is the AdS radius.  

 

Because                    ,  we find  

 

 

 

This agrees with the known area law relation in QFTs. 
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UV-IR duality 

 

In the HEE calculation, the UV-IR duality is manifest: 

UV IR 

Z Z 

IR 
UV 



Comments 

 

• A complete proof of HEE formula is still missing,  there has been  

     many evidences and no counter examples.  (We will explain  

     some of them later.) 
 

• If  backgrounds are time-dependent, we need to employ extremal  

     surfaces in the Lorentzian spacetime instead of minimal surfaces. 

     If there are  several extremal surfaces we should choose the one  

      with the smallest area.        [Hubeny-Rangamani-TT 07] 

 

• In the presence of black hole horizons, the minimal surfaces  

     wraps the horizon as the subsystem A grows enough large.   

    ⇒ Reduced to the Bekenstein-Hawking entropy, consistently. 



 
 

.
2

222
22

z

dxdtdz
Rds




(5-2) HEE from AdS3/CFT2  

In AdS3/CFT2,  the HEE is given by the geodesic length  
in the AdS3:   
 
 
This is explicitly evaluated as follows: 
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Finally, the HEE is found to be 

 

 

 

where we employed the famous relation 

 

 

 

In this way, HEE reproduces the 2 dim. CFT result. 
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 [Brown-Henneaux 86] 



Finite temperature CFT 
 

Consider a 2d CFT in the high temp. phase               . 
 

⇒ The dual gravity background is the BTZ black hole: 
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Geometric Interpretation 

               (i) Small A                            (ii) Large A 

BH 
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Disconnected Subsystem and Phase Transition  

                                                                       [Headrick 10]  

 

 

 

                                    phase transition 

  

 

   This is consistent with the CFT calculations done  

  in [Calabrese-Cardy-Tonni 09]  . 



(5-3)  Heuristic Understanding of HEE Formula 

 

Let us try to derive the HEE from the bulk-boundary  

relation of AdS/CFT.  ⇒ We employ the replica method. 
                                                                                                    

In the CFT side, the (negative) deficit angle                   is  

localized on        : 

 

 

 

Assumption :  The AdS dual is given by extending the  

deficit angle into the bulk AdS.    [Fursaev 06] 
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⇒ The curvature is delta functionally localized on the  

deficit angle surface: 
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However, this argument is not completely correct  

because the assumption can easily fail. [Headrick 10] 

⇒ Indeed,             does not agree with CFT results for n=2,3,.. 

      due to back-reactions to make the geometry smooth. 

 

       HEE formula          The absence of backreaction  

                                         in the `n→1 limit’   

                                             (not proven at present) 

 

In particular, when ∂A = a round sphere, there is a  

direct proof of  HEE formula by [Casini-Huerta-Myers 11]. 

 

 



(5-4) Holographic Strong Subadditivity 

The holographic proof of SSA inequality is very quick !            
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Note:  This proof can be applied if 
      for any functional F.   
                    ⇒ higher derivative corrections 

[Headrick-TT 07] 



Tripartite Information  [Hayden-Headrick-Maloney 11] 

 

Recently, the holographic entanglement entropy is shown  

to have a special property called monogamy. 

 

 

 

 

Comments:   

(i) HEE argues that this is true for large N gauge theories.  

(ii) This property is not always true for QFTs.   

(iii) This shows that HEE satisfies the Cadney-Linden-Winter inequality.  

(iv) In 2+1 dim. gapped theories, this means that top. EE is non-negative. 

(v) This property is also confirmed in  time-dependent examples. 

         [Balasubramanian-Bernamonti-Copland-Craps-Galli 11,  Allais-Tonni  11] 
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(5-5) Higher derivative corrections to  HEE  

                                                                                 

Consider stringy corrections but ignore loop corrections in AdS. 

     (⇔deviations from strongly coupled limit, but still large N in CFT) 
       

⇒  A precise formula was found for Lovelock gravities. 
                                        [Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11]        

   Ex. Gauss-Bonnet Gravity    

 

 

 

 

 

 

                                                  [But for general higher derivative theories, this is hard !]   

⇒ However, HEE formula is not known in more general cases.   
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Consider the HEE in the Poincare metric  dual to  a CFT on R1,d.  

We concentrate on the following two examples. 

                    (a) Straight Belt                              (b) Circular disk 

l
l

1dL

⑥ Aspects of HEE 
 
(6-1) HEE in Higher dim. 

A B A B A 



Entanglement Entropy for (a) Infinite Strip from AdS 

divergence law Area

 cutoff.  UVon the

 dependnot  does and finite is  termThis

d=1 (i.e. AdS3) case:                                                
                                                                   Agrees with 2d CFT results  
                                                                   [Holzhey-Larsen-Wilczek 94 ;  
                                                                    Calabrese-Cardy 04] 

 
 



Basic Example of AdS5/CFT4 
 

 

 

 

 

 

 
   

           

 The order one deviation is expected since the AdS result  

corresponds to the strongly coupled Yang-Mills.  
                                                  [cf.  4/3  in thermal entropy,  Gubser-Klebanov-Peet 96] 
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Entanglement Entropy for (b) Circular Disk from AdS   

                                                                                                                            [Ryu-TT 06] 

divergence

 law Area

Conformal Anomaly (central charge) 
2d CFT     c/3・log(l/a) 
4d CFT     -4a・log(l/a) 
 
 

A universal quantity which  
characterizes odd dim. CFT 
⇒ Satisfy ‘C-theorem’  
 [Myers-Sinha 10;  closely related  

to F-theorem Jafferis-Klebanov- 
Pufu-Safdi 11]   

 [Ryu-TT 06, Solodukhin 08,10,  Lohmayer-Neuberger-
Schwimmer-Theisen 09,  Dowker 10, Casini-Huerta, 10,  
Myers-Sinha 10, Casini-Hueta-Myers 11]  



HEE with a Cusp in 2+1 dim CFTs 

 

 

 

 

                                                 [Casini-Huerta 06,08,  Hirata-TT 06] 

 

 

 

 

 

 

 

                                                                      

                                                                                                                   [Hirata-TT 06] 

Free scalar 

Free fermion 

HEE 



• In spite of a heuristic argument [Fursaev, 06] , there has been no  

   complete proof.  However,  there have been many evidences and  

   no counter examples so far. 

 

[A Partial List of Evidences] 

 

  Area law follows straightforwardly [Ryu-TT 06] 

  Agreements with analytical 2d CFT results for AdS3 [Ryu-TT 06] 

 Holographic proof of strong subadditivity [Headrick-TT 07] 

  Consistency of 2d CFT results for disconnected subsystems                

      [Calabrese-Cardy-Tonni 09]   with our holographic formula  [Headrick 10]                                                                                            

  Agreement on the coefficient of log term in 4d CFT  (~a+c) 

     [Ryu-TT 06, Solodukhin 08,10,  Lohmayer-Neuberger-Schwimmer-Theisen 09,   

       Dowker 10, Casini-Huerta, 10,  Myers-Sinha 10, Casini-Hueta-Myers 11]  

 

 



(6-2) Confinement/deconfinement Phase Transitions 

 

 Here we study  a confinement/deconfinement phase transition 

to see if the HEE can be an order parameter.  One of the simplest  

gravity duals of confining gauge theories is the AdS soliton.   

     The AdS5 soliton ⇔ (2+1) dim. pure SU(N) gauge theory. 
 

 

 

                                                                                              B    A 

                            
z

 IR

 UV

AdS Soliton 

Cap off: 
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l

Minimal  
 Surface 



The metric of AdS soliton is given by the double Wick rotation of the  

AdS black hole solution.    
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                                                [Nishioka-TT 06’, Klebanov-Kutasov-Murugan 07’+ 

Sfinite 

Confinement 
/ deconfinement 

    transition  

Minimal Surface 

Disconnected Surfaces 

In the holographic calculation, two different surfaces 
compete and this leads to the phase transition.  

r=r0 

l

l

l



In summary, we find the following behavior  
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Lattice Results for 4D Pure YM   
[4d SU(3):  Nakagawa-Nakamura-Motoki-Zakharov 0911.2596]  Phase Transition 

[4d SU(2):  Buividovich-Polikarpov 0802.4247] 

 Phase Transition 

[See for other calculations of EE in lattice gauge 
theory: Velytsky 0801.4111, 0809.4502; 
Buividovich-Polikarpov 0806.3376, 0811.3824] 



Twisted AdS Soliton 

 

Next we consider the twisted AdS Soliton 

dual to the N=4 4D Yang-Mills with twisted boundary  

conditions.  In general, supersymmetries are broken. 

 

 

 

 

The dual metric can be obtained from the double Wick  

rotation of the rotating 3-brane solution. 



           The metric of the twisted AdS Soliton 



The entanglement entropies computed in the free Yang- 

Mills and the AdS gravity agree nicely! 

 

 

 

 

 

 

 

 

 

This is another evidence for our holographic formula.  

Twist parameter 

Entropy 

Free Yang-Mills 

AdS side (Strongly coupled YM) 

Supersymmetric Point 



 

⑦ HEE and Thermalization 
                                                                                        
(7-1)  Time Evolution of HEE 

 

Consider  the following time-dependent  setup of AdS/CFT: 
 

    Black hole formation in AdS  ⇔ Thermalization in CFT 
 

     Explicit examples:   

        GR analysis in AdS: Chesler-Yaffe 08, Bhattacharyya-Minwalla 09,… 

        Probe D-brane (apparent BH on D-branes): Das-Nishioka-TT 10,… 

  

Note:  The thermalization under a sudden change of Hamiltonian  

           is called quantum quench and has been intensively studied  

           in condensed matter physics. [Calabrese-Cardy 05-10] 

 



An Entropy Puzzle   
 

(i) Von-Neumann entropy remains vanishing under a unitary 
evolutions of a pure state. 

 

 

(ii) In the gravity dual, its holographic dual inevitably includes a  

  black hole at late time and thus the entropy looks non-vanishing ! 

                                Clearly,  (i) and (ii)  contradicts ! 

 

 

 cf.  the black hole information paradox  

 ⇒ we need to include  

        quantum corrections. 
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Resolution of the Puzzle via Entanglement Entropy 
                                                                                           [Arrastia-Aparicio-Lopez 10, Ugajin-TT 10] 

Upshot:  The non-vanishing entropy appears only    

after coarse-graining.  The von-Neumann entropy itself is  

vanishing even in the presence of black holes in AdS. 

                
First, notice that the (thermal) entropy for the total system can be  

found from the entanglement entropy via the formula 

 

 
This is indeed vanishing if we assume the pure state relation   

                                                    SA=SB.  
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Indeed, we can holographically show this as follows: 
 

 

 

 

 

                                                                                         [Hubeny-Rangamani-TT 07] 
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Therefore, if the initial state does not include BHs,  then always  

we have SA=SB  and thus Stot=0.  

 

⇒ In such a pure state system, the total entropy is not useful to  

  detect  the BH formation. 

 

⇒ Instead, the entanglement entropy SA can be used to probe  

    the BH formation as it is a coarse-grained entropy. 

 

Note:  In time-dependent black holes, the definition of  

             BH entropy is not unique. 

        ⇒   We need to specify how coarse-grain the system.   

               HEE offers us one convenient example of this.     



Time Evolutions of HEE under Quantum Quenches  

In 1+1 dim. CFTs, we expect  

a linear growth of EE after a  

quantum quench.                                                   
[Calabrese-Cardy    05] 

 

 

 

 Causality →                            HEE reproduced the same result. 
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[Arrastia-Aparicio-Lopez 10]  
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The time evolution of HEE in higher dim. have been conducted  

recently. 

 

⇒ In higher dim.,   depends on the shape of A. 

 

HEE predicts:  A = strip →               ,        A = round disk →  

          
 

 

[Albash-Johnson 10, Balasubramanian-Bernamonti-de Boer-Copland-
Craps- Keski-Vakkuri-Müller-Schäfer-Shigemori-Staessens 10, 11, .…+ 
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(7-2)  An Solvable Example in 2D CFT:  Free Dirac Fermion 
 
   As an explicit example in CFT side, we would like to study  
quantum quench in the 2D free Dirac fermion.  In this case, we  

can calculate the time evolution of EE with the finite size effect.   
 
AdS/CFT:  free CFT              quantum gravity   
                                                with a lot of quantum corrections ! 
    

   Assuming that the initial wave function       flows into a  
boundary fixed point as argued in [Calabrese-Cardy 05],  we can identify 
 
 

where          is the boundary state. The constant       is a regularization  
paramter and measures the strength of the quantum quench: 
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The final result of entanglement entropy is given by 
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Time evolution of entanglement entropy 
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⑧ Fermi Surfaces and HEE   

                                                                                             [Ogawa-Ugajin-TT, 11] 

 (8-1)  Logarithmic Violation of Area Law 

 

In d dim. lattice models that the area law of EE is violated 
logarithmically in free fermion theories.     [Wolf 05, Gioev-Klich 05] 

 

 

Comments:   

(i)  This property can be understood from the logarithmic EE in 2D 
CFT, which approximates the radial excitations of fermi surface. 

(ii) It is natural to expect that this property is true for non-Fermi 
liquids.    [Swingle 09,10,  Zhang-Grover-Vishwanath 11 etc.] 
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Note  in this lattice calculation assumes 

 

 

Instead,  in our holographic context which corresponds to a  

continuous limit, we are interested in the case                          . 

               

In this case, we expect 

 

 

 

Below we would like to see if we can realize this behavior in HEE. 

We assume that all physical quantities can be calculable in the  

classical gravity limit ( i.e.                  Fermi surfaces).  
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(8-2) Holographic Construction 

 

The metric ansatz:  

 

 

      (Below we work d=2 i.e. AdS4/CFT3 setup.) 

 

The logarithmical behavior of EE occurs iff 

 

 

 

Note: f(z) does not affect the HEE.  
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(8-3) Null Energy Condition 

 

To have a sensible holographic dual, a necessary condition is  

known as the null energy condition: 

 

 

In the IR region, the null energy condition argues 

 

 

The specific heat behaves like 

 

  

   Notice that this excludes standard Landau fermi liquids. 
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[Ogawa-Ugajin-TT,  see also Huijse-Sachdev-Swingle 11, Shaghoulian 11] 



In summary,  we find that classical gravity duals only allow             

non-fermi liquids.    

 

Comments:   

 

(i) Our definition of classical gravity duals is so restrictive that  

 it does not include  either the emergent AdS2 geometry  

  [Faulkner-Liu-McGreevy-Vegh 09, Cubrovic-Zaanen-Schalm 09]  nor the electron  

stars (or Lifshitz) [Hartnoll-Polchinski-Silverstein-Tong 09, Hartnoll-Tavanfar 10] . 

 

(ii) More generally, the background with                        leads to 
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(iii) We can embed this background in an effective gravity theory: 

 

 

  

if   W and V behave in the large φ limit  as follows 
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 Later, it has been pointed out that, such a background is 
understood as the violation of hyperscaling 

  ⇒ A generalization of Lifshitz spacetime 

          [Huijse-Sachdev-Swingle 11, Dong-Harrison-Kachru-Torroba-Wang 12] 
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⑨ HEE and BCFT 

 (9-1) AdS/BCFT   

What is a holographic dual of CFT on a manifold with  

Boundary (BCFT) ?          

                         CFTd:  SO(d,2)     ⇔  AdSd+1 

                      BCFTd:  SO(d-1,2)  ⇔      AdSd 

 

                       ？ 

 

 

                                                                                                                                  

  
   [Earlier studies:  Karch-Randall 00 (BCFT,DCFT),… 

        Bak-Gutperle-Hirano 03, Clark-Freedman-Karch-Schnabl 04 (Janus CFT) 

   Sugra Sol. D’Hoker-Estes-Gutperle 07,  

         Aharony-Berdichevsky-Berkooz-Shamir 11] 
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AdS/BCFT Proposal  [Fujita-Tonni-TT 11]  

 

   In addition to the standard AdS boundary M,  

we include an extra boundary Q, such that ∂Q=∂M. 

 

     

    

EOM at boundary leads to  

   the Neumann b.c. on Q : 
 

 

    

     Conformal inv. ⇒ 
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(9-2) Simplest Example  

Consider the AdS slice metric: 

 

 

Restricting the values of ρ to                              solves the 

boundary condition with 
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The boundary entropy [Affleck-Ludwig 91]  

Sbdy  measures the degrees of freedom at the boundary.   

 

The g-theorem: 

Sbdy monotonically decreases under the RG flow in CFT. 

                                                                          [proved by Friedan -Konechny 04] 

 

Definition 1  (Disk Amplitude) 

It is simply defined from the disk amplitude 
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(9-3) Holographic Boundary Entropy 



Definition 2  (Cylinder Amplitude) 

 

 

 

 

Definition 3  (Entanglement Entropy) 
 

 

 

 

In 2D BCFT, the EE generally behaves like 

 

 
                                                                                  [Calabrese-Cardy 04] 
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In our setup,  HEE can be found as follows 

 

 

 

 
             [Earlier calculations:  Azeyanagi-Karch-Thompson-TT 07  (Non-SUSY Janus), 

                                                         Chiodaroli-Gutperle-Hung, 10   (SUSY Janus) ] 

 

  Also                               can be confirmed in other two definitions. 
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Hawking-Page Transition for BCFT on an interval 

 

 

 

 

 

 

The phase transition occurs  

when                                      

i.e. 
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(9-4) Holographic g-Theorem 

Consider the surface Q  defined by                in the Poincare metric 

 

 

 

We impose the null energy condition for the boundary matter 

i.e.                                for any null vector       . 
    [cf.  Hol. C-theorem:  Freedman-Gubser-Pilch-Warner 1999,  Myers-Sinha 2010] 

For the null vector,  

we find the constraint   
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Thus we simply get                   from the null energy condition. 

Define the holographic g-function: 

 

 

 

Then we find 

 

because                                      . 

 

For d=2, at fixed points                 agrees with the boundary entropy. 

For any d,               is a monotonically decreasing function w.r.t. z. 

 

             This is our holographic g-theorem ! 
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Example:  AdS4/BCFT3 

 

In this case, we obtain 
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in odd dim. CFT ? 

This should come from the 2 dim. boundary ! 



Boundary central charge 

 

As the usual central charge in 2 dim. CFT, we can define a  

boundary central charge in BCFT3 as follows: 

 

 

 

In our holographic calculation, we obtain 

 

 

Our holographic g-theorem leads to a c-theorem for         . 

              Our conjecture:  this is true for all BCFT3.  
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(9-5) Time-dependent solution 

 

The analytical continuation to the Lorenzian signature 

leads to the following time-dependent solution 
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In the BCFT side, these two BCFTs are entangled with each other. 

The entanglement entropy between them is calculated as 

 

 

 

This is equal to the entropy 

 

of the BTZ Black hole: 

 

They are indeed related by a coordinate transformation. 
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⑩ Conclusions 

• The entanglement entropy (EE) is a useful bridge between   

  gravity (string theory) and cond-mat physics.  

 

     Gravity                        Entanglement           Cond-mat. 

                                                                                            systems 

 

• EE can characterize various phases of ground states 

      (CFT, mass gap, fermi surfaces, topological etc.) .    

    In odd dim. CFT, it provides an analogue of central charge. 

 

• Especially in higher dimensions,  the HEE offers us a powerful  

    way to calculate EE for strongly coupled systems.  
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• EE is helpful for understanding s of various (quantum) gravity 
phenomena such as black hole formations, singularities etc. 

 

 

Future Problems 

 

• Proof of HEE ? 

• Complete Higher derivative corrections to HEE ? 

• 1/N corrections to HEE ? 

• More on HEE and Fermi Liquids ? 

• HEE for non-AdS spacetimes ? 

• What is an analogue of the Einstein eq. for HEE ? 

• A New Formulation of QG in terms of Quantum Entanglement   
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