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Abstract

The large track detectors of the LHC experiments require an accurate alignment with the determination of several 10 k parameters in order to allow to make use
of the potential high spatial resolution, necessary for the physics goals. The experiment-independent Millepede program performs a simultaneous fit of (global)
alignment parameters and (local) track parameters, and allows to include e.g. laser and survey data and equality constraints in the fit. The Millepede II version,
now on the web, uses fast methods in the non-iterative fit.

1. Introduction

2. Mathematical methods

3. Using Millepede II for alignment
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1. Introduction history

Design: experiment-independent program, not specific to alignment and tracks.

Year What happened?

Millepede I 1996 First studies at CERN (Opal)
1997 First version used in H1 (with simultaneous fit)
1998 Used in H1 for Vertex det. and Central Jet Chamber
1999 Used with up to 4 800 parameters (HERAb)
2000 Millepede I on the web, last program change

2001
2002
2003
2004

Millepede II 2005 Start of new development for large nr of parameters
2006 Test with H1 and cms data, up to 50 k parameters
2007 Millepede II on the web (25.th May)

tar -xzf Mptwo.tgz

make

./pede -t

Millepede I used by: H1, ZEUS, HERAb, CMS, LHCb, ALICE, PHENIX, STAR . . .

⇒ Talk by M. Stoye: Track-based alignment of the CMS Tracker with Millepede II
(includes studies on χ2-invariant deformations)
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Goal of Millepede II development

Version II should align a track detector, within hours, with:

100 000 alignment parameters, 100 constraints, Million tracks (+ Laser + survey data)

Construct and minimize “global” objective function F (p, q), which depends on the alignment cor-
rections p and all track parameters q and . . .

F (p, q) = 1
2

∑
data sets

[∑
events

(∑
tracks

(∑
hits

∆2
i /σ

2
i

))]
+
∑

[terms depending on Laser data and Survey data]

with fastest and most precise method [⇒] (References):

• Simultaneous fit of all alignment and local (track, Laser, . . . ) parameters (Millepede principle)
in a single step, using large Hessian matrix in global fit,

• introduction of constraints; possible (only) with global fit, and

• include detailed outlier treatment: reject or down-weight bad data (method of M-estimates – no
pure least squares fit).[⇒]
Note: initial deviations may be large due to misalignment!

Note: standard methods require space ∝ n2 → 80 Gbyte and cpu-time ∝ n3 → 1 year
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Translation table . . .

HE Physics ⇒ ⇐ Mathematics, Statistics

χ2-function, χ2 formalism . . . . . . . . . . . . . . . . . . . . . objective function (log-likelihood function) . . . .

constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . measurement-term in objective function . . . . . . .

? (exact constraint) . . . . . . . . . . . . . . . . . . . . . . . . . . . constraint (equality, inequality constraints) . . . .

unconstrained parameters . . . . . . . . . . . . . . . . . . . . . undefined, ill-defined parameters . . . . . . . . . . . . . .

unbiased residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pull = residual/σm . . . . . . . . . . . . . . . . . . . . . . . . . . . . pull = residual/
√

σ2
m − σ2

f . . . . . . . . . . . . . . . . . . . .

“linear system of equations requires inversion” “never solve a system of equations by inversion”

“solve 4200 equations in 4200 unknowns: com-
putational infeasible; even worse, non-linear fit
wont’t converge” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

“current algorithms . . . for generally constrained
optimization routinely solve systems in the tens
and, perhaps even, hundreds of thousands of un-
knowns and constraints” . . . . . . . . . . . . . . . . . . . . . .
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Space-time . . . double precision assumed

time
6

seconds
10−9

10−6

10−3

1

103

106

109

minute

hour

day

year

32 y

1× T0

103

106

109

1012

1015

5× 5

10× 10

100× 100

1 k × 1 k

10 k × 10 k

matrix inversion

T = T0 · n3

space
6

bytes

8 Gb

4 Gb

2 Gb

1 Gb

512 Mb

256 Mb

128 Mb

64 Mb

32-bit
64-bit

matrix storage

50 k × 50 k sparse
(15 %)

45 k × 45 k symmetric

10 k × 10 k square

10 k × 10 k symmetric

5 k × 5 k square

5 k × 5 k symmetric

100 k lvmini optimization
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2. Mathematical methods ≡ minimization

(0) Construction of objective function F (x).
x ∈ Rn with start value x0.

(1) Quadratic model of F (x):
→ Mk(d) = Fk + dT∇Fk + 1

2
dTCkd

(2) Newton-step dk from Ck dk = −∇Fk

expected decrease δF = 1
2
dT∇Fk

improve by line-search φ(α) ≡ F (xk + α · dk)

→ never divergent!

xk+1 = xk + α · dk and k := k + 1

repeat (1) and (2) until δF small

(3) Covariance matrix = C−1

F (x) with large correlation

start point

Newton step

Matrix-based Newton method: making use of matrix C, quadratic function is minimized by one
step, non-quadratic function minimized with quadratic convergence rate.

Methods without matrix: e.g. parameter variation and steepest-descent (no matrix C) with only
linear convergence are slow; the convergence may never occur as the iteration stagnates (can be
misinterpreted as indication for convergence).

V. Blobel – University of Hamburg 2nd LHC Detector Alignment Workshop page 6



Reduction of matrix size

Hessian matrix C for simultaneous fit of (global) alignment and track parameters, of order (nglobal +
5×ntracks, can be reduced to order nglobal (Millepede principle, simple formalism from linear algebra,
based on Schur complement). [⇒]

Element (C)jk 6= 0,
if parameters j and
k appear together in
a track:

C =



x x x x x x x
x x x x x x

x x x x x x
x x x x x
x x x x x x
x x x x x

x x x x x
x x x x x x
x x x x x x x


Matrix is sparse: fraction q of non-
diagonal elements 6= 0, with q =
2% . . . 15%.

C−1 =



x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x


Inverse matrix = covar. matrix
would be dense matrix: corre-
lation between each index pair
6= 0.

If track parameters fixed:

Element (C)jk 6= 0, if
parameters j and k ap-
pear together at a mea-
sured point:

C =



x
x
x
x
x
x
x
x
x


Matrix is (block)-diagonal.

C−1 =



x
x
x
x
x
x
x
x
x


(Block)-diagonal: correlations ignored.
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Minimization with constraints

Constraint equations for m linear (equality) constraints described by

Ax = c (A has m rows)

Task: minimize F (x) subject to Ax = c

Step d calculation with Lagrange method: introduce m multipliers λ

L(x) = F (x)+λT (Ax− c)

 C AT

A 0


 d

λ

 =

 −∇F

c

 Joseph-Louis Lagrange
(1736 – 1813)

Matrix equation has unique solution (for sufficient constraints) even for singular matrix C.[⇒]

Why constraints?

• Remove singularity of matrix – essential
Constrain overall translation + rotation to zero.

• Introduction of structural constraints – optional
Parameters for larger unit + for all individual sensors
with overall zero-effect of individual sensors (constraint)
→ individual sensors can be fixed for quick check, using reduced
nr of parameters and tracks.

Structure: 6 parameters

6 parameters 6 parameters

6 parameters 6 parameters

(6 + 4× 6) parameters − 6 constraints
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Solution of matrix equation in Millepede II

Sparse matrix structure is constructed dynamically from the data, with solution by . . .

GMRES= generalized minimal residuals∗)

solve C x = y or minimize ‖C x− y‖2 (needs only product C × vector)

Fast for sparse (and dense) matrix C. Iterative method is related to conjugate gradients and to
Lanczos tridiagonalization; convergence speed depends on eigenvalue spectrum.

Convergence is accelerated by preconditioning. In Millepede II the variable-band matrix Cholesky
decomposition [⇒] is recommended for preconditioning.

Example:

solution takes 10 minutes (factor 5000 faster than inversion) for 50 000 parameters plus
130 constraints.

. . . allows to calculate, for selected parameters, the standard deviation and the global correlation.[⇒]

Also direct methods for sparse exist: MA27 (1983) and MA57 (2004) (variant of Gaussian elimination, Schur complement)

Other methods in MP II: inversion, diagonalization [⇒], variable-band matrix Cholesky decomposition [⇒];
methods may include large number of constraints (Lagrange).
∗)

C. C. Paige and M. A. Saunders (1975), Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12(4), pp. 617-629.

www.stanford.edu/group/SOL/software/minres.html Software MINRES from July 2003
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Cpu-times for alignment

Approximate formula for cpu-time:

cpu-time = T (Ntracks, Nparameters) = Niterations ×
(
α ·Ntracks + β ·Nγ

parameters

)
γ ≥ 1

Values of α, β, γ, Niterations depend on algorithm.

Experiment lang Nparameters Ntracks Niterations Nconstraints cpu-time (+ remarks)

Global non-iterative method: (simultaneous alignment and track parameter fit)

Millepede (cms) F77 50 000 > 3 Mio 130 1:40 hour + file times
(M. Stoye study) (below 2 Gbyte)

Local methods: (track parameters fixed, bias removed by large number of iterations)

D0 C++ 6 000 0.7 Mio 70 – 100 – 1 – 3 days

BaBar Si tracker C++ 1 440 ? ∼ 100 – < 24 hours
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3. Using Millepede II for alignment

Input = sets of single measured data points from local fits (e.g. Kalman fit [ZEUS] with track hits):

yi = f(xi, q, p)︸ ︷︷ ︸
fit function

+
ν∑

j=1

(
∂f

∂qj

)
∆qj︸ ︷︷ ︸

local derivatives

+
∑
`∈Ω

(
∂f

∂p`

)
∆p`︸ ︷︷ ︸

global derivatives

+ ε ε ∈ N(0, σ2
i ); ` = parameter label︸ ︷︷ ︸

positive integer

Derivatives express the change of residual zi = yi − f(xi, q, p), if qj or p` is changed by ∆qj or ∆p`.

(1) File with zi = yi−f(xi, q, p),
σi and all derivatives written
within user program by Mille
(by parallel processing).

Allows to repeat local fits
(only last iteration) in Pede.

User program Mille-

?�� �data files

Pede program

? ?

?

�� ��� �

�� �

text files data files

text files

(2) Data files are processed in stand-alone program Pede, steered by text files: [⇒]

• select files and solution method (inversion, diagonalization, fast sparse method . . . )

• information on measurement of linear combinations of global parameters (e.g. survey data)

• status of global parameters (e.g initial values, fixed/variable, presigma)
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Alignment strategies I “all inclusive” parameters

Note: all parameters are correlated, and isolated optimization of a subset may distort results.

Alignment and calibration parameters:

• simultaneous fit of all parameters, no separate calibration or alignment of detector parts;

• include calibration of e.g. Lorentz angle, local values of drift velocity, T0-values, coefficients for
correction functions;

• include beam parameters: vertex position, beam direction;

• but: do not include too many (and ill-defined) parameters.

Use realistic data model f(., .) for the detector, i.e. understand the detector properties in detail, and
adjust assumed accuracy of the detector parts.

A wrong “component” in the track data model may introduce alignment distortions!
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Alignment strategies II “all inclusive” input data

• Simultaneous use of all available data types:
? (normal) tracks

? 2-track particles (given mass)

? tracks with common vertex

? cosmics (incl. horizontal)

? B = 0 cosmics

? halo muons

? Laser data

? survey data
(temperatur effect?)

to reduce potential distortions; matrix becomes denser!
(check accuracy of track reconstruction of “unusual” tracks (off-vertex tracks, halo muons)).

• linear equality constraints to fix undefined degrees of freedom (translation, rotation)

• (optionally) define detector parameter structure by constraints;

• adjust measurement accuracy (for aligned detector);

• outlier rejection and down-weighting of bad single hits (has to be adjusted).

Analyse alignment result and look for potential distortions or deformations (⇒ Talk by M.Stoye), and

• eventually introduce further constraints to fix weakly defined linear parameter combinations.
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Summary

New Millepede II on the web

Download from: www.desy.de/∼blobel/ into
fresh directory:

tar -xzf Mptwo.tgz

make

./pede -t

Use of > 400 Mbyte memory requires to change 1 state-
ment in code + makefile for 64-bit system.

Millepede II can be used:

• Feedback welcome and necessary!

• Perhaps several (small) changes during the coming weeks (if feedback 6= 0).

• Addition of

• L-BFGS method, for even larger number of parameters(?)[⇒] ,

• another solution method(?),

• histogram viewer for histogram file?

• Do not forget to understand your detector.

V. Blobel – University of Hamburg 2nd LHC Detector Alignment Workshop page 14



References

[1] J. Nocedal and S.J. Wright, Numerical Optimization, Springer Series in Operations Research,
Springer (1999)

[2] W.C. Davidon, Variable metric method for minimization, manuscript (1958), finally published
SIAM J. Optimization 1 (1991) pp. 1-17.

[3] J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation 35
(1980) pp.773-782
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If there are these questions . . . Outliers

The presence of outliers in the data can deteriorate the alignment result.
Difficulty: wrong initial alignment parameters can fake outliers.

Millepede I: Large initial cut at ≈ 10σ reduced to 3σ in ≈ 5 internal iterations.

Millepede II: Same as Millepede I, in addition technique of M-estimates applied to local fits, after
the first iteration.

M-estimates. The objective function in least squares is the sum of squares of scaled residuals z, with
larger influence for larger residuals (outliers). The square is replaced in M-estimates by a dependence
with reduced influence for larger residuals (used in local fits).

influence function add. weight
z = residual/std. deviation ρ(z) = ln pdf(z) ψ(z) = dρ(z)/dz ω(z) = ψ(z)/z

Least squares =
1
2
z2 = z = 1

Cauchy(c = 2.3849) =
c2

2
ln
(
1 + (z/c)2

)
=

z

1 + (z/c)2
=

1
1 + (z/c)2

Huber

{
if |z| ≤ c = 1.345
if |z| > c = 1.345

=

{
z2/2
c (|z| − c/2)

=

{
z

c · sign (z)
=

{
1
c/|z|

-10 0 10
-2

0

2 Influence function

least squares

Cauchy

Tukey

[back]
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Simultaneous fit . . . the Millepede principle

The Hessian C of a simultaneous fit of 100 000 global parameters – a square 100 000× 100 000 matrix
– and of 1 Mio tracks with 5 parameters each – 1 Mio 5× 5 matrices.

The Hessian Ctotal is in total a 5 100 000× 5 100 000 matrix (100 Terabytes) . . .

Ctotal =



x x x x · · ·
x x x x · · ·

x x x x · · ·
x x x x x x x · · ·

x x x x · · ·
x x x x · · ·

x x x x · · ·
x x x x · · ·

x x x x · · ·
x x x x x
x x x x x
x x x x x

x x x x x x
x x x x x x
x x x x x x

x x x x x
x x x x x
x x x x x

x x x x x x
x x x x x x
x x x x x x

...
...

...
...

...
...

...
...

...
. . .



−→ Cglobal =



x x
x x

x x
x x x x x
x x x

x x
x x x
x x x
x x x



Element (Cglobal)jk 6= 0, if parameters
j and k in same local fit.

Note: the inverse of a sparse matrix
Cglobal (= covariance matrix) is dense;
all parameters are correlated!

. . . is reduced to a (sparse) 100 000× 100 000 matrix Cglobal for the global parameters.
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Millepede simultaneous fit



∑
k Ck · · · Hglobal-local

k · · ·

...
. . . 0 0

(
Hglobal-local

k

)T
0 C local

k 0

... 0 0
. . .



×



∆pglobal

...

∆qlocal
k

...



=



∑
k bglobal

k

...

blocal
k

...


The Millepede principle: transfer of the local information to the global Hessian C

Cglobal =
∑

k

Ck −
∑

k

HkC
−1
k HT

k (“Schur complement”)

(transfer of the local information to the global Hessian C. Cglobal

×
 ∆pglobal

 =

 ∑
k bglobal

k


[back]
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Variable-band matrix or arrow matrix

Cholesky decomposition C = LDLT cpu-time ∝ n×m2

L = left unit triangular (band) matrix D = diagonal matrix

C =



x x x x
x x x x x x
x x x x x x x x

x x x x x x x
x x x x x x x x

x x x x x x x
x x x x x x

x x x x x x x x
x x x x x x x

x x x x x x x
x x x x x x x

x x x x x x
x x x x x x x x x x o o o

x x x x x x x x x o o o
x x x x x x x x o o o


=⇒ L =



x
x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x x x x x x x x x x

x x x x x x x x x x x x x x
x x x x x x x x x x x x x


The matrix equation Cx = L

(
DLTx

)
= y can be solved in two steps:

solve Lz = y for z by forward substitution, and

solve LTx = D−1z for x by backward substitution.

[back]
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Solution by diagonalization

The diagonalization of the symmetric matrix C allows to recognize singularity or near singularity by
the determination of eigenvalues, and to suppress corresponding linear combinations of parameters.

Computing time and space requirement larger compared to inversion, and solution less precise (espe-
cially for small eigenvalues; mixing of eigenvectors).

C = U D UT Diagonalization of symmetric matrix

with D diagonal, U square and orthogonal with U UT = UT U = 1. Note: C−1 = U D−1 UT

eigenvalue ordering in D = [diag (λi)] : λ1 ≥ . . . ≥ λk ≥ λk+1 = . . . λn = 0 (or very small)

Solution of C x = y by x = U

[
diag

(
1√
λi

)][
diag

(
1√
λi

)] (
UTy

)
︸ ︷︷ ︸
= q with V [q] = 1

with replacement 1/λi = 0 for λi = 0 or small qi with |qi| . 1; keep significant modes with small λi.

⇒ Suppression of insignificant linear combinations, which could produce distortions of the detector.

[back]
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Elements of the covariance matrix with MINRES

The inverse of matrix C is the covariance matrix V of the alignment parameters. This is available
with matrix inversion and diagonalization, but not with MINRES.

Method to compute some elements of V with MINRES:

Solution of matrix equation C V = 1 (right hand-side 1 is unit matrix)

for V would give the complete covariance matrix V and . . .

. . . solution of matrix equation Cvj= ej (right hand-side ej is j-th column of unit matrix)

for vj will give on j-th column of the covariance matrix V .

Elements of covariance matrix are determined by hit statistics and by geometry.

[back]
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Feasible parameters

A vector x compatible with constraint equations Ax− c = 0 is called a feasible vector.

Round-off errors can introduce small deviations: Ax− c = ε.

In order to force feasibility a minimum-norm correction ∆x with min ‖∆x‖2 is calculated by

∆x = −AT
(
AAT

)−1
ε

in each iteration.

The product AAT is a square m-by-m non-singular matrix for sufficient constraints.

[back]
V. Blobel – University of Hamburg 2nd LHC Detector Alignment Workshop page 22



Millepede II Keywords steering file example

Fortranfiles
!/home/albert/filealign/lhcrun1.11 ! data from first test run
/home/albert/filealign/lhcrun2.11 ! data from second run

Cfiles
/home/albert/filealign/cosmics.bin ! cosmics
/home/albert/detalign/mydetector.txt ! file from previous result file
/home/albert/detalign/myconstr.txt ! test constraints

Parameter ! set status for selected parameters
201 0.0 0.0 ! variable parameter (default), initial value = 0
202 1.732 -1.0 ! fixed parameter, initial value = 1.732
204 1.23 0.020 ! variable parameter with presigma
constraint 0.14 ! numerical value of constraint equation
713 1.0 720 0.5 ! pairs of parameter label and numerical factor
Measurement 10.3 0.1 ! survey distance [713]-[714] = 10.3 +- 0.1
713 1.0 714 -1.0

method sparseGMRES 5 0.1 ! Generalized residual minimization, sparse matrix
bandwidth 6 ! with variable-band matrix preconditioning
chisqcut 15 6 ! chisquare cut for first and second loop
outlierdownweighting 5 ! down-weighting in 5 local iterations
dwfractioncut 0.2 ! reject bad records
printrecord 13 -1 ! debug printout for record 13 and worst record
histprint ! print histograms
subito ! exit after first step
end

[back]
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Limited memory BFGS (L-BFGS)

What to do, if the number of parameters is 200 000 or 500 000?

Large-scale limited memory BFGS algorithm has space requirement proportional to number of param-
eters, with e.g. only 60 Mbyte for 100 000 parameters. Information about the matrix C is stored in a
limited number of vector pairs!

Minimization package lvmini, using L-BFGS, developed for n = 2 up to several 100 000 parameters,
needs gradient ∇F . So far no constraints possible.

280-parameter Neural Net training and > 100 000 parameter minimization under study.

Use of lvmini in Millepede II would require different
method for constraints: elimination method under study.

Could also be used for large-scale optimization e.g in calorimeter calibration.

-10 0 10
0

20

40

60E 03

lvmini-example of fit with 20 parameters
Initial parameter values correspond to red line.
Minimization requires ≈ 100 function evaluations.

[back]
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