Millepede II

Volker Blobel - Universität Hamburg
Abstract

 now on the web, uses fast methods in the non-iterative fit.

1. Introduction

2. Mathematical methods
3. Using Millepede II for alignment Summary

Design: experiment-independent program, not specific to alignment and tracks.

	Year	What happened?
Millepede I	$\begin{aligned} & 1996 \\ & 1997 \\ & 1998 \\ & 1999 \\ & 2000 \end{aligned}$	First studies at CERN (Opal) First version used in H1 (with simultaneous fit) Used in H1 for Vertex det. and Central Jet Chamber Used with up to 4800 parameters (HERAb) Millepede I on the web, last program change
	$\begin{aligned} & 2001 \\ & 2002 \\ & 2003 \\ & 2004 \end{aligned}$	
Millepede II	$\begin{aligned} & 2005 \\ & 2006 \\ & 2007 \end{aligned}$	Start of new development for large nr of parameters Test with H1 and cms data, up to 50 k parameters Millepede II on the web (25.th May)
Millepede I used by: H1, ZEUS, HERAb, CMS, LHCb, ALICE, PHENIX, STAR ... \Rightarrow Talk by M. Stoye: Track-based alignment of the CMS Tracker with Millepede II (includes studies on χ^{2}-invariant deformations)		

Goal of Millepede II development

Version II should align a track detector, within hours, with:
100000 alignment parameters, 100 constraints, Million tracks (+ Laser + survey data)

Construct and minimize "global" objective function $F(\boldsymbol{p}, \boldsymbol{q})$, which depends on the alignment corrections \boldsymbol{p} and all track parameters \boldsymbol{q} and ...

$$
F(\boldsymbol{p}, \boldsymbol{q})=\frac{1}{2} \sum_{\text {data sets }}\left[\sum_{\text {events }}\left(\sum_{\text {tracks }}\left(\sum_{\text {hits }} \Delta_{i}^{2} / \sigma_{i}^{2}\right)\right)\right]+\sum[\text { terms depending on Laser data and Survey data }]
$$

with fastest and most precise method $[\Rightarrow]$ (References):

- Simultaneous fit of all alignment and local (track, Laser, ...) parameters (Millepede principle) in a single step, using large Hessian matrix in global fit,
- introduction of constraints; possible (only) with global fit, and
- include detailed outlier treatment: reject or down-weight bad data (method of M-estimates - no pure least squares fit). $[\Rightarrow]$
Note: initial deviations may be large due to misalignment!

Note: standard methods require space $\propto n^{2} \rightarrow 80$ Gbyte and cpu-time $\propto n^{3} \rightarrow 1$ year

Translation table

HE Physics \Rightarrow	\Leftarrow Mathematics, Statistics
χ^{2}-function, χ^{2} formalism	objective function (log-likelihood function)
constraint	measurement-term in objective function
$?$ (exact constraint)	constraint (equality, inequality constraints)
unconstrained parameters	undefined, ill-defined parameters
unbiased residual	?
pull $=$ residual $/ \sigma_{m}$	$\text { pull }=\operatorname{residual} / \sqrt{\sigma_{m}^{2}-\sigma_{f}^{2}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
"linear system of equations requires inversion"	"never solve a system of equations by inversion"
"solve 4200 equations in 4200 unknowns: computational infeasible; even worse, non-linear fit wont't converge"	"current algorithms . . . for generally constrained optimization routinely solve systems in the tens and, perhaps even, hundreds of thousands of unknowns and constraints"

Space-time

...double precision assumed

(0) Construction of objective function $F(\boldsymbol{x})$. $\boldsymbol{x} \in \mathcal{R}^{n}$ with start value \boldsymbol{x}_{0}.
$F(\boldsymbol{x})$ with large correlation
(1) Quadratic model of $F(x)$:
$\rightarrow M_{k}(\boldsymbol{d})=F_{k}+\boldsymbol{d}^{\mathrm{T}} \boldsymbol{\nabla} F_{k}+\frac{1}{2} \boldsymbol{d}^{\mathrm{T}} \boldsymbol{C}_{k} \boldsymbol{d}$
(2) Newton-step \boldsymbol{d}_{k} from $\boldsymbol{C}_{k} \boldsymbol{d}_{k}=-\boldsymbol{\nabla} F_{k}$
expected decrease $\delta F=\frac{1}{2} \boldsymbol{d}^{\mathrm{T}} \boldsymbol{\nabla} F_{k}$
improve by line-search $\phi(\alpha) \equiv F\left(\boldsymbol{x}_{k}+\alpha \cdot \boldsymbol{d}_{k}\right)$
\rightarrow never divergent!
$\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha \cdot \boldsymbol{d}_{k}$ and $k:=k+1$
repeat (1) and (2) until δF small
(3) Covariance matrix $=\boldsymbol{C}^{-1}$

Matrix-based Newton method: making use of matrix \boldsymbol{C}, quadratic function is minimized by one step, non-quadratic function minimized with quadratic convergence rate.

Methods without matrix: e.g. parameter variation and steepest-descent (no matrix \boldsymbol{C}) with only linear convergence are slow; the convergence may never occur as the iteration stagnates (can be misinterpreted as indication for convergence).

Reduction of matrix size

Hessian matrix \boldsymbol{C} for simultaneous fit of (global) alignment and track parameters, of order $\left(n_{\text {global }}+\right.$ $5 \times n_{\text {tracks }}$, can be reduced to order $n_{\text {global }}$ (MilLEPEDE principle, simple formalism from linear algebra, based on Schur complement). $[\Rightarrow]$
$\begin{aligned} & \text { Element }(\boldsymbol{C})_{j k} \neq 0, \\ & \text { if parameters } j \text { and } \\ & k \text { appear together in } \\ & \text { a track: }\end{aligned} \quad \boldsymbol{C}=\left(\begin{array}{lllllll}x & x & x & x & & & x \\ x & & x & x & x & x & x \\ x & x & x & & x & x & \\ & x & & x & x & x & \\ x & x & x & & x & x \\ x & x & x & x & & x & x\end{array}\right)$
Matrix is sparse: fraction q of nondiagonal elements $\neq 0$, with $q=$ 2%... 15%.
$\boldsymbol{C}^{-1}=\left(\begin{array}{lllllllll}x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x \\ x & x & x & x & x & x & x & x & x\end{array}\right)$
Inverse matrix $=$ covar. matrix would be dense matrix: correlation between each index pair $\neq 0$.

If track parameters fixed:

Element $(\boldsymbol{C})_{j k} \neq 0$, if parameters j and k appear together at a measured point:

Matrix is (block)-diagonal.

(Block)-diagonal: correlations ignored.

Minimization with constraints

Constraint equations for m linear (equality) constraints described by

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{c} \quad(\boldsymbol{A} \text { has } m \text { rows })
$$

Task: minimize $F(\boldsymbol{x})$ subject to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{c}$
Step \boldsymbol{d} calculation with Lagrange method: introduce m multipliers $\boldsymbol{\lambda}$
$\mathcal{L}(\boldsymbol{x})=F(\boldsymbol{x})+\boldsymbol{\lambda}^{\mathrm{T}}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{c}) \quad\left(\begin{array}{c|c}\boldsymbol{C} & \boldsymbol{A}^{\mathrm{T}} \\ \hline \boldsymbol{A} & 0\end{array}\right)\binom{\boldsymbol{d}}{$\hline $\boldsymbol{\lambda}}=\binom{-\nabla F}{$\hline $\boldsymbol{c}}$

Joseph-Louis Lagrange (1736-1813)

Matrix equation has unique solution (for sufficient constraints) even for singular matrix $\boldsymbol{C} .[\Rightarrow]$
Why constraints?

- Remove singularity of matrix - essential Constrain overall translation + rotation to zero.
- Introduction of structural constraints - optional Parameters for larger unit + for all individual sensors with overall zero-effect of individual sensors (constraint) \rightarrow individual sensors can be fixed for quick check, using reduced nr of parameters and tracks.

Structure:
6 parameters

$(6+4 \times 6)$ parameters -6 constraints

Solution of matrix equation in Millepede II

Sparse matrix structure is constructed dynamically from the data, with solution by ...
GMRES $=$ generalized minimal residuals*)
solve $\boldsymbol{C} \boldsymbol{x}=\boldsymbol{y} \quad$ or minimize $\quad\|\boldsymbol{C} \boldsymbol{x}-\boldsymbol{y}\|_{2} \quad$ (needs only product $\boldsymbol{C} \times$ vector)
Fast for sparse (and dense) matrix \boldsymbol{C}. Iterative method is related to conjugate gradients and to Lanczos tridiagonalization; convergence speed depends on eigenvalue spectrum.

Convergence is accelerated by preconditioning. In Millepede II the variable-band matrix Cholesky decomposition $[\Rightarrow]$ is recommended for preconditioning.

Example:
solution takes 10 minutes (factor 5000 faster than inversion) for 50000 parameters plus 130 constraints.
... allows to calculate, for selected parameters, the standard deviation and the global correlation. $[\Rightarrow]$
Also direct methods for sparse exist: MA27 (1983) and MA57 (2004) (variant of Gaussian elimination, Schur complement)
Other methods in MP II: inversion, diagonalization $[\Rightarrow]$, variable-band matrix Cholesky decomposition $[\Rightarrow]$; methods may include large number of constraints (Lagrange).

[^0]
Cpu-times for alignment

Approximate formula for cpu-time:

$$
\text { cpu-time }=T\left(N_{\text {tracks }}, N_{\text {parameters }}\right)=N_{\text {iterations }} \times\left(\alpha \cdot N_{\text {tracks }}+\beta \cdot N_{\text {parameters }}^{\gamma}\right) \quad \gamma \geq 1
$$

Values of $\alpha, \beta, \gamma, N_{\text {iterations }}$ depend on algorithm.

Experiment	lang	$N_{\text {parameters }}$	$N_{\text {tracks }}$	$N_{\text {iterations }}$	$N_{\text {constraints }}$	cpu-time (+ remarks)
	Global non-iterative method: (simultaneous alignment and track parameter fit)					
Millepede (cms) (M. Stoye study)	F77	50000	$>3 \mathrm{Mio}$		130	1:40 hour + file times (below 2 Gbyte)
	Local methods: (track parameters fixed, bias removed by large number of iterations)					
D0	C^{++}	6000	0.7 Mio	$70-100$	-	$1-3$ days
BaBar Si tracker	C^{++}	1440	?	~ 100	-	< 24 hours

3. Using Millepede II for alignment

Input $=$ sets of single measured data points from local fits (e.g. KALMAN fit [ZEUS] with track hits):

$$
y_{i}=\underbrace{f\left(x_{i}, \boldsymbol{q}, \boldsymbol{p}\right)}_{\text {fit function }}+\underbrace{\sum_{j=1}^{\nu}\left(\frac{\partial f}{\partial q_{j}}\right) \Delta q_{j}}_{\text {local derivatives }}+\underbrace{\sum_{\ell \in \Omega}\left(\frac{\partial f}{\partial p_{\ell}}\right) \Delta p_{\ell}}_{\text {global derivatives }}+\epsilon \quad \epsilon \in N\left(0, \sigma_{i}^{2}\right) ; \ell=\underbrace{\text { parameter label }}_{\text {positive integer }}
$$

Derivatives express the change of residual $z_{i}=y_{i}-f\left(x_{i}, \boldsymbol{q}, \boldsymbol{p}\right)$, if q_{j} or p_{ℓ} is changed by Δq_{j} or Δp_{ℓ}.
(1) File with $z_{i}=y_{i}-f\left(x_{i}, \boldsymbol{q}, \boldsymbol{p}\right)$, σ_{i} and all derivatives written within user program by Mille (by parallel processing).
Allows to repeat local fits (only last iteration) in Pede.

(2) Data files are processed in stand-alone program PEDE, steered by text files: $[\Rightarrow]$

- select files and solution method (inversion, diagonalization, fast sparse method ...)
- information on measurement of linear combinations of global parameters (e.g. survey data)
- status of global parameters (e.g initial values, fixed/variable, presigma)

Note: all parameters are correlated, and isolated optimization of a subset may distort results.

Alignment and calibration parameters:

- simultaneous fit of all parameters, no separate calibration or alignment of detector parts;
- include calibration of e.g. Lorentz angle, local values of drift velocity, T_{0}-values, coefficients for correction functions;
- include beam parameters: vertex position, beam direction;
- but: do not include too many (and ill-defined) parameters.

Use realistic data model $f(.,$.$) for the detector, i.e. understand the detector properties in detail, and$ adjust assumed accuracy of the detector parts.

A wrong "component" in the track data model may introduce alignment distortions!

- Simultaneous use of all available data types:

\star (normal) tracks	\star cosmics (incl. horizontal)	\star Laser data
$\star 2$-track particles (given mass)	$\star \boldsymbol{B}=0$ cosmics	\star survey data
\star tracks with common vertex	\star halo muons	(temperatur effect?)

to reduce potential distortions; matrix becomes denser!
(check accuracy of track reconstruction of "unusual" tracks (off-vertex tracks, halo muons)).

- linear equality constraints to fix undefined degrees of freedom (translation, rotation)
- (optionally) define detector parameter structure by constraints;
- adjust measurement accuracy (for aligned detector);
- outlier rejection and down-weighting of bad single hits (has to be adjusted).

Analyse alignment result and look for potential distortions or deformations (\Rightarrow Talk by M.Stoye), and

- eventually introduce further constraints to fix weakly defined linear parameter combinations.

Summary

New Millepede II on the web
Download from: www.desy.de/~blobel/ into fresh directory:

```
tar -xzf Mptwo.tgz
make
    ./pede -t
```

Use of >400 Mbyte memory requires to change 1 statement in code + makefile for 64 -bit system.

Millepede II can be used:

- Feedback welcome and necessary!
- Perhaps several (small) changes during the coming weeks (if feedback $\neq 0$).
- Addition of
- L-BFGS method, for even larger number of parameters(?) $[\Rightarrow]$,
- another solution method(?),
- histogram viewer for histogram file?
- Do not forget to understand your detector.

References

[1] J. Nocedal and S.J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer (1999)
[2] W.C. Davidon, Variable metric method for minimization, manuscript (1958), finally published SIAM J. Optimization 1 (1991) pp. 1-17.
[3] J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation 35 (1980) pp.773-782
[4] J.J.Moré and D.J. Thuente, Line search algorithms with guaranteed sufficient decrease, ACM Transactions on Mathematical Software 20 (1994), pp. 286-307
[5] F. James and M. Roos, Minuit, Function Minimization and Error Analysis, Reference Manual, CERN Program Library Long Writeup D506 (1994)
F. James and M. Winkler, Minuit Users Guide (C ${ }^{++}$Version), CERN (2004)
[6] Ph.E. Gill et al., Practical Optimization, Academic Press (1981)
[7] J.F. Bonnans et al., Numerical Optimization - Theoretical and Practical Aspects, Springer (2000)
[8] I.S. Duff et al., Direct Methods for Sparse Matrices, Oxford Science Publ. (1986)
[9] H.R. Schwarz, Numerische Mathematik, Teubner (1993)
[10] P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outlier Detection, Wiley (2003)
\qquad

The presence of outliers in the data can deteriorate the alignment result.
Difficulty: wrong initial alignment parameters can fake outliers.
Millepede I: Large initial cut at $\approx 10 \sigma$ reduced to 3σ in ≈ 5 internal iterations.
Millepede II: Same as Millepede I, in addition technique of M-estimates applied to local fits, after the first iteration.

M-estimates. The objective function in least squares is the sum of squares of scaled residuals z, with larger influence for larger residuals (outliers). The square is replaced in M-estimates by a dependence with reduced influence for larger residuals (used in local fits).

Simultaneous fit

The Hessian \boldsymbol{C} of a simultaneous fit of 100000 global parameters - a square 100000×100000 matrix - and of 1 Mio tracks with 5 parameters each - 1 Mio 5×5 matrices.

The Hessian $\boldsymbol{C}_{\text {total }}$ is in total a 5100000×5100000 matrix (100 Terabytes) \ldots

Element $\left(\boldsymbol{C}_{\text {global }}\right)_{j k} \neq 0$, if parameters j and k in same local fit.

Note: the inverse of a sparse matrix $\boldsymbol{C}_{\text {global }}$ (= covariance matrix) is dense; all parameters are correlated!
\ldots is reduced to a (sparse) 100000×100000 matrix $\boldsymbol{C}_{\text {global }}$ for the global parameters.

Millepede simultaneous fit

The Millepede principle: transfer of the local information to the global Hessian \boldsymbol{C}

$$
\boldsymbol{C}_{\text {global }}=\sum_{k} \boldsymbol{C}_{k}-\sum_{k} \boldsymbol{H}_{k} \boldsymbol{C}_{k}^{-1} \boldsymbol{H}_{k}^{T} \quad \text { ("Schur complement") }
$$

(transfer of the local information to the global Hessian \boldsymbol{C}.

$$
\left(\begin{array}{c}
C_{\text {global }}
\end{array}\right) \times\left(\Delta p^{\text {global }}\right)=\left(\sum_{k} g_{k}^{\text {global }}\right)
$$

$$
\begin{aligned}
& \text { Cholesky decomposition } \\
& \boldsymbol{C}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{\mathrm{T}} \quad \text { cpu-time } \propto n \times m^{2} \\
& \boldsymbol{L}=\text { left unit triangular (band) matrix } \quad \boldsymbol{D}=\text { diagonal matrix }
\end{aligned}
$$

The matrix equation $\boldsymbol{C} \boldsymbol{x}=\boldsymbol{L}\left(\boldsymbol{D} \boldsymbol{L}^{\mathrm{T}} \boldsymbol{x}\right)=\boldsymbol{y}$ can be solved in two steps:

$$
\begin{array}{rlrl}
\text { solve } \quad \boldsymbol{L} \boldsymbol{z} & =\boldsymbol{y} & & \text { for } \boldsymbol{z} \text { by forward substitution, and } \\
\text { solve } & \boldsymbol{L}^{\mathrm{T}} \boldsymbol{x} & =\boldsymbol{D}^{-1} \boldsymbol{z} & \\
\text { for } \boldsymbol{x} \text { by backward substitution. }
\end{array}
$$

Solution by diagonalization

The diagonalization of the symmetric matrix \boldsymbol{C} allows to recognize singularity or near singularity by the determination of eigenvalues, and to suppress corresponding linear combinations of parameters.

Computing time and space requirement larger compared to inversion, and solution less precise (especially for small eigenvalues; mixing of eigenvectors).

$$
\boldsymbol{C}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\mathrm{T}} \quad \text { Diagonalization of symmetric matrix }
$$

with \boldsymbol{D} diagonal, \boldsymbol{U} square and orthogonal with $\boldsymbol{U} \boldsymbol{U}^{\mathrm{T}}=\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}=1$. Note: $\boldsymbol{C}^{-1}=\boldsymbol{U} \boldsymbol{D}^{-1} \boldsymbol{U}^{\mathrm{T}}$
eigenvalue ordering in $\boldsymbol{D}=\left[\operatorname{diag}\left(\lambda_{i}\right)\right]: \quad \lambda_{1} \geq \ldots \geq \lambda_{k} \geq \lambda_{k+1}=\ldots \lambda_{n}=0 \quad$ (or very small)

$$
\text { Solution of } \boldsymbol{C} \boldsymbol{x}=\boldsymbol{y} \text { by } \boldsymbol{x}=\boldsymbol{U}\left[\operatorname{diag}\left(\frac{1}{\sqrt{\lambda_{i}}}\right)\right] \underbrace{\left[\operatorname{diag}\left(\frac{1}{\sqrt{\lambda_{i}}}\right)\right]\left(\boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}\right)}_{=\boldsymbol{q} \quad \text { with } \boldsymbol{V}[\boldsymbol{q}]=1}
$$

with replacement $1 / \lambda_{i}=0$ for $\lambda_{i}=0$ or small q_{i} with $\left|q_{i}\right| \lesssim 1$; keep significant modes with small λ_{i}. \Rightarrow Suppression of insignificant linear combinations, which could produce distortions of the detector. [back]

Elements of the covariance matrix with MINRES

The inverse of matrix \boldsymbol{C} is the covariance matrix \boldsymbol{V} of the alignment parameters. This is available with matrix inversion and diagonalization, but not with MINRES.

Method to compute some elements of \boldsymbol{V} with MINRES:

Solution of matrix equation $\boldsymbol{C} \boldsymbol{V}=\mathbf{1} \quad$ (right hand-side $\mathbf{1}$ is unit matrix)
for \boldsymbol{V} would give the complete covariance matrix \boldsymbol{V} and ...
\ldots solution of matrix equation $\boldsymbol{C} \boldsymbol{v}_{j}=\boldsymbol{e}_{j} \quad$ (right hand-side \boldsymbol{e}_{j} is j-th column of unit matrix) for \boldsymbol{v}_{j} will give on j-th column of the covariance matrix \boldsymbol{V}.

Elements of covariance matrix are determined by hit statistics and by geometry.
[back]

Feasible parameters

A vector \boldsymbol{x} compatible with constraint equations $\boldsymbol{A x}-\boldsymbol{c}=0$ is called a feasible vector.

Round-off errors can introduce small deviations: $\boldsymbol{A x}-\boldsymbol{c}=\boldsymbol{\varepsilon}$.

In order to force feasibility a minimum-norm correction $\boldsymbol{\Delta x}$ with min $\|\boldsymbol{\Delta} \boldsymbol{x}\|_{2}$ is calculated by

$$
\boldsymbol{\Delta} \boldsymbol{x}=-\boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)^{-1} \boldsymbol{\varepsilon}
$$

in each iteration.

The product $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}$ is a square m-by- m non-singular matrix for sufficient constraints.
[back]

Limited memory BFGS (L-BFGS)

What to do, if the number of parameters is 200000 or $500000 ?$

Large-scale limited memory BFGS algorithm has space requirement proportional to number of parameters, with e.g. only 60 Mbyte for 100000 parameters. Information about the matrix \boldsymbol{C} is stored in a limited number of vector pairs!

Minimization package lvmini, using L-BFGS, developed for $n=2$ up to several 100000 parameters, needs gradient ∇F. So far no constraints possible.

280-parameter Neural Net training and >100000 parameter minimization under study.

Use of lvmini in Millepede II would require different method for constraints: elimination method under study.

lvmini-example of fit with 20 parameters
Initial parameter values correspond to red line.
Minimization requires ≈ 100 function evaluations.

Contents

1. Introduction
Goal of Millepede II development 3
Translation table 4
Space-time 5
2. Mathematical methods 6
Reduction of matrix size 7
Minimization with constraints 8
Solution of matrix equation in Millepede II 9
Cpu-times for alignment 10
3. Using Millepede II for alignment 11
Alignment strategies I 12
Alignment strategies II 13
Summary 14
References 15
If there are these questions 16
Outliers 16
Simultaneous fit 17
Millepede simultaneous fit 18
Variable-band matrix 19
Solution by diagonalization 20
Elements of the covariance matrix with MINRES 21
Feasible parameters 22
Millepede II Keywords 232 Table of contents

[^0]: ${ }^{*)}$ C. C. Paige and M. A. Saunders (1975), Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12(4), pp. 617-629. www.stanford.edu/group/SOL/software/minres.html Software MINRES from July 2003

