We 5

First Alignment Geometry of LHCb (Survey and First Data)

Steven Blusk Syracuse University

On behalf of the LHCb Collaboration

LHC Detector Alignment Workshop, June 25-26, 2007

HMch

LHCb Detector/Tracking

LHCb LHCb Detector/Tracking

HMch

LHCb Detector/Tracking

TT: Silicon Strips
$\square 183 \mu \mathrm{~m}$ pitch

- 128 seven-sensor ladders
$\square 4$ layers: $\mathrm{X}, \mathrm{U}\left(5^{\circ}\right), \mathrm{V}\left(-5^{\circ}\right), \mathrm{X}$
21 stations
R and φ sensors
LHCb Tracking System

Muon Detecto

LHCb LHCb Detector/Tracking

Hek

LHCb Detector/Tracking

LHCb LHCb Detector/Tracking

HMch

LHCb Detector/Tracking

 Expected Performance

Momentum resolution

Impact parameter resolution

LHCb ?
 Impact of Misalignments

Momentum resolution

Impact parameter resolution

LHCb ?
 Alignment Project Goals

- Precision of final detector alignment should lead to negligible impact on physical measurements.
- Momentum resolution, e.g., kinematic separation of $\mathrm{B} \rightarrow \mathrm{K} \pi, \mathrm{B}_{\mathrm{S}} \rightarrow \mathrm{K} \pi$
- Impact parameter / proper time resolution.
- Number of alignable objects in LHCb < ALICE \ll CMS, ATLAS
- VELO: 84 sensors
- IT: 336 ladders
- OT: 108 modules
- RICH: Internal alignment and alignment to tracking system critical for PID.
- MUON, CAL more course granularity
- LHCb an "open" detector

- Has some benefits for in situ survey, although its getting very tight!
- Little/no deflection of chambers when B turned ON

KHCD 를
 LHCb Survey Task Force

\square Survey Task Force Charge: To analyze survey data from the CERN Survey group, CMM surveys from the Institutes and CERN, and determine a first set of alignment constants for LHCb.

That is: Where is each detector as compared to where we "wanted it to be".
\square Geometry DB will be updated once analysis is complete. Expect final analysis ~Sept.
\square Team of sub-detector experts are:
\square VELO: Sebastien Viret, Malcolm John
IT: Geraldine Conti
ITT: Jeroen Van Tilburg
\square OT: Antonio Pellegrino
\square RICH1: Fabio Metlica
RICH2: Antonis Pananestis, Christopher Frei
\square Muon: Katherine Mair
\square SPD, ECAL, HCAL: Olivier Deschamps
\square Beam Pipe: Gloria Corti
\square Magnet: Rolf Lindner
ח. Conrdinator. SR

HMCB

VErtex LOcator

$\sim 10 \mu \mathrm{~m}$ hit resolution (depends on radius)\rightarrow Requires precise alignment
\square Locating the VELO in LHCb
\square Sensors on Modules
\square Modules on baseplate
\square Baseplate on detector support
\square Detector support in VELO vessel
\square Surveys, every step of the way! \square Often, several times using different techniques
\square 2D tracks in R-view used in trigger to detect large IP tracks
\rightarrow Sensor rel. alignment to within $\sim 50 \mu \mathrm{~m}$ (3D tracks fully exploit alignment)
\square VELO retracted and re-insterted between fills ($3 \mathrm{~cm} \leftrightarrow \rightarrow \sim 7 \mathrm{~mm}$). $\square \sim 10 \mu \mathrm{~m}$ repeatability

 Planarity of sensors

Detectors quite flat, as expected

Distance to plane (fiducials)	h_dfp1	
90	Entries	220
${ }_{80}{ }^{-}$	Mean	$5.474 \mathrm{e}-05$
${ }_{70}{ }^{\text {E }}$	RMS	9.616
E	Underflow	0
E	Overflow	0

Planar and Vertical?

3 of the 42 modules

\square Constraint system added to keep modules' positions stable along beam axis
\square Slightly tilted by the constraint system
\square Well measured by survey, to be included in Geom DB

LHCb -
 Placement of VELO Vessel

- VELO vessel installed in pit \& surveyed

Deviations from nominal 1σ error $=0.3 \mathrm{~mm}$

Point	DX (mm)	DY (mm)	DZ (mm)
LOTU	0.4	-0.3	-0.5
LOTD	0.5	-0.2	-0.4
LOBD	0.4	-0.1	-0.2
LOBU	0.3	-0.3	-0.2
LOTM	0.3	-0.2	-0.4
ROTU	-0.4	0.0	-0.2
ROTD	-0.3	0.2	-0.4
ROBD	-0.6	0.3	-0.5
ROBU	-0.4	0.3	-0.1
ROTM	-0.2	0.2	-0.3

\square VELO well positioned.
\square Z-axis known to $\sim 0.3 \mathrm{mrad}$.
Once we have collisions, we can adjust if necessary.

LHCb VELO Alignment @ Work

November '06 test-beam of VELO half (6 modules read out).
\square Usage of survey data in detector description as seed for track-based alignment.
\square Millepede-1 algorithm deployed, worked as expected (kudos to Seb!)
\square Usage of r- ϕ relative sensor alignment survey data greatly improved resolution.
\square MC invariant bugs in geometry uncovered; only uncovered by having data!
\square Alignment unchanged as VELO pressure reduced from ATM to \sim few $^{*} 10^{-5} \mathrm{mbar}$.
\square Small changes in alignment in going from RT to -20C

Alignment before(open) after (red) pumping down

偲解

Tracking Stations Global View

LHCD
 Outer Tracker

- Pitch of 5.25 mm tightly controlled by mechanical jigs
- Tolerance $20 \mu \mathrm{~m}$ maximum deviation of wire from center of tube

Holes for
Rasniks

- Straw modules are located on C-frame using precise dowel pin alignment
- Dowel pins will be surveyed with OT in its nominal closed position
- C-frame attached to bridge;
- Position adjustable both vertically and along beam direction
- Bridge (upper), table (lower) and rails (top\&bottom) surveyed, adjusted and within tolerances
- Monitoring of C-frame with RASNIKs
- Status: All modules installed. Final survey with OT in closed position needs to be done (beam pipe protection prohibits closing).

Relative alignment of two-sensor ladders done and well within tolerance (see next slide)
\square Survey of sensor with respect to fiducials exterior to the box underway
\square Survey of boxes in detector hall on E-frame still to come

LHCh 5 IT Ladder Survey

Survey with respect to precision alignment pins on ladder. Systematic shifts from nominal values
Small, will be corrected in software alignment

LHCb Trigger Tracker (TT) Alignment

Survey of all ladders

Ladders attach to balconies; aligned with precision pins

Precision alignment holes on AlN ceramic substrate

TT rails, boxes installed and surveyed. Well within tolerances!

Excellent repeatability wrt open/close

Next up: Survey of balconies, install service boxes, install ladders \& test...

Hek
 Muon Alignment

- Modest alignment requirements for muon system in LHCb.
- Hardware alignment to within $\sim 1 \mathrm{~mm}$ is expected to be achieved through various survey measurements
- Mainly used in L0 trigger and for identifying muons reconstructed in T-Stations.
- Momentum measurement comes from T Stations.

kHch e
 Alignment Strategy First Collisions
 - Magnet OFF data

- Straight track segments
- Magnetic field effects decoupled from geometry
- Use calorimeter for rough momentum estimate (if necessary)
- ~1M min-bias events should be sufficient to obtain reasonably good alignment for ~entire detector
- At 2 kHz , this is 10 minutes of data.
- Halo tracks to reduce systematics, improve precision
- Clean event/track selection, isolation requirements(?) hit ambiguity(?), avoid LR ambiguity in straw for first pass, usage of overlap regions in IT/OT; being implemented, considered.
- All relevant DOF's determined
- Magnet ON data
- Cross-check magnet off alignments.
- Internal DOF should not change; perhaps (albeit unlikely) small global shifts (magnet tests later this summer)
- Mass \& Vertex constraints; see talk by Wouter Hulsbergen.
- Misalignment challenge: Misalign all relevant DOF's and perform alignment. Include correlations. Aligners blind to input misalignments (will assume rigid body elements for now). Try both random and systematic misalignments. Hierarchial, ala ATLAS study Timescale: Fall 07.
- Expect to employ both Millepede style approach and Iterative χ^{2} technique.

4

Summary

- LHCb surveys well underway
- Generally excellent control over mechanical alignment during construction.
- In the final stages:
- VELO: Just finished survey of second detector-half
- IT: Finishing up sensor-to-box surveys; Install IT boxes
- After beampipe protection removed, need to survey IT boxes and OT modules in the rolled in position.
- Survey of TT balconies. Install TT, etc.
- Can collect reasonable size data samples for alignment "quickly"
- Magnet off data critical, done first, then magnet on data
- \#Alignable elements $\sim 10^{3}$, not 10^{5} ! 9
- Integrated alignment framework still in development to allow for either a Millepede or Iterative style alignment
- Velo alignment, already in action; well tested
- T-Station framework rapidly developing
- Eventually have a fully integrated tracking alignment package.
- Looking forward to misalignment challenge in Fall.

Hek

BACKUPS

LHCD dis of OT Survey (A. Pellegrino)

Survey of Bridge Rails

\square Bridge \& Table surveyed in pit. \square C-frame attached to bridge rails at 2 points via adjustable trolley wheels
\square Flexibility to adjust
OT C-frame along $\mathrm{Y}_{\text {LHCb }}, \mathrm{Z}_{\text {LHCb }}$.
\square Nominal $Z_{\text {SU }} \sim 3225$ (2 cm too high) \square C-frame lowered.

RICH-2

(Christoph Frei, A. Papenestis)

- RICH-2 built outside the cavern and installed as a unit in the cavern.
\square Overall alignment of RICH2 with respect to nominal values
$\square \mathrm{X}$ axis rotated by ~-0.65 mrad
\square Y axis rotated by 0.1 mrad
$\square \mathrm{Y}=1.2 \mathrm{~mm}$
$\square \Delta X \sim 0$
$\square \Delta \mathrm{Z}=-2.2 \mathrm{~mm}$

LHCb E ECAL/HCAL
 \square ECAL Survey Summary

\square Wall size is within measurement error to design value
\square x,y-positions of module are known to $\pm 0.5 \mathrm{~mm}$
\square z-position: all modules within $\pm 2 \mathrm{~mm}$
\square HCAL Survey Summary
\square Lateral tolerance within +/- 1.5 mm
Front side vertical within $+/-0.5 \mathrm{~mm}$
\square Height at four edges within $+/-0.2 \mathrm{~mm}$
\square PRS Survey Summary
\square Measurements of the vertical position of the super-module have been made
\square Has moved ($\sim \mathrm{cm}$) after beam has been weighted (cable trays)
\square Re-positioning and measurement do be done
\square Some offsets need to be included in geometry DB.
\square No conditions as of this point

