Alignment with tracks fitted with a Kalman filter

LHC Alignment Workshop, 25/06/2007

Wouter Hulsbergen (CERN/LBD)
introduction

• good reasons to use **same track model** in calibration and reconstruction
 - track model and calibration are not independent
 - consistency is more important than correctness!

• practically all modern experiments use a Kalman filter for track fitting
 - one important advantage is efficiency in dealing with multiple scattering

• it has been said that Kalman filter track fit is unsuitable for alignment
 - tracks that come out of the K-filter usually have incomplete covariance matrix

• in this talk, I'll discuss in reasonable detail
 - an alternative formulation of the minimum chi-square formalism for alignment
 - how to make the output of the Kalman filter suitable for alignment
 - how to include vertex and mass constraints

• this is all 'theory': I have no real results to present!
minimum chisquare fit

- define a track chisquare as

\[\chi^2 = \sum_{\text{hits } i} \left(\frac{m_i - h_i(x)}{\sigma_i} \right)^2 \]

where
- \(m \) \(\rightarrow \) measurement, \(\sigma \) \(\rightarrow \) measurement error
- \(x \) \(\rightarrow \) track parameters, usually 5
- \(h \) \(\rightarrow \) measurement model

- we can also write this in a matrix notation

\[\chi^2 = r^T V^{-1} r \]

- \(r = m - h(x) \) \(\rightarrow \) residual vector
- \(V \) \(\rightarrow \) measurement covariance matrix (usually diagonal)

- the 'least squares estimator' is the value for \(x \) that minimizes chisquare
minimum chisquare fit (II)

• the condition that the chisquare is minimal wrt ‘x’ is

$$0 \equiv \frac{d \chi^2}{dx} = -2 H^T V^{-1} r$$

• solution can be obtained by linearizing the measurement model
 - start with some value \(x^{(0)} \), calculate first derivative
 - calculate also second derivative (neglect \(d^2r/dx^2 \))

$$\frac{d^2 \chi^2}{dx^2} = 2 H^T V^{-1} H$$

- obtain new estimate of parameters with

$$x^{(1)} = x^{(0)} - \left(\frac{d^2 \chi^2}{dx^2} \right)^{-1} \frac{d \chi^2}{dx}$$

\[\text{Cov}(x) = 2 \left(\frac{d^2 \chi^2}{dx^2} \right)^{-1} \]

• if \(h(x) \) is not a linear model (\(H \) is not constant): use iterations
• suppose now, that we have
 - a sample of independently reconstructed tracks
 - a set of calibration constants 'alpha' common to the tracks
• we would like to minimize a total chisquare

\[
\chi^2 = \sum_{\text{tracks } j} \left(r^T V^{-1} r \right)_j
\]

with respect to both alpha and all track parameters

• following procedure outlined on previous slides. two scenarios:
 1. minimize for x and alpha simultaneously on large sample of tracks
 - unpractical, because too many parameters
 2. minimize every track to x first, then alpha on a large sample of tracks
 - keep track of dependence of x on alpha through total derivative

\[
\frac{d}{d\alpha} = \frac{\partial}{\partial \alpha} + \frac{\partial x}{\partial \alpha} \frac{\partial}{\partial x}
\]
chisquare minimization for alignment

- calculate $dx/d\alpha$ from requirement that track chisquare remains minimal

$$0 = \frac{d}{d\alpha} \frac{\partial \chi^2}{\partial x} = \frac{\partial^2 \chi^2}{\partial \alpha \partial x} + \frac{dx}{d\alpha} \frac{\partial^2 \chi^2}{\partial x \partial \alpha}$$

$$\frac{dx}{d\alpha} = -\frac{\partial^2 \chi^2}{\partial \alpha \partial x} \left(\frac{\partial^2 \chi^2}{\partial x \partial \alpha} \right)^{-1}$$

- now calculate 'total derivatives' of chisquare to alpha

$$\frac{d\chi^2}{d\alpha} = 2 \sum_{\text{tracks}} \frac{\partial r^T}{\partial \alpha} V^{-1} \left(V - HCH^T \right) V^{-1} r$$

$$\frac{d^2\chi^2}{d\alpha^2} = 2 \sum_{\text{tracks}} \frac{\partial r^T}{\partial \alpha} V^{-1} \left(V - HCH^T \right) V^{-1} \frac{\partial r}{\partial \alpha}$$

$C = \text{Cov}(x)$

- these formulas give the least squares estimator for alpha
- same result as in Blobel and Kleinwort (2002), Bruckman et al (2005), etc
minimum chisquare condition is ‘local’

- it seems as if derivative to one parameter depends on each hit on track

\[
\frac{d\chi^2}{d\alpha} = 2 \sum_{\text{tracks}} \left(\frac{\partial r}{\partial \alpha} \right)^T V^{-1} \left(V - HCH^T \right) V^{-1} r
\]

this matrix correlates derivatives for module ‘i’ with hits in module ‘j’

- however, if the track chisquare is at its minimum

\[
H^T V^{-1} r = 0 \quad \rightarrow \quad \frac{d\chi^2}{d\alpha} = 2 \sum_{\text{tracks}} \left(\frac{\partial r}{\partial \alpha} \right)^T V^{-1} r
\]

diagonal

- hence, the first derivative is 'local': only partial derivatives count
- why is this relevant? if there are other contributions to X^2, e.g.
 - multiple scattering constraints
 - hits in a reference system
 - vertex constraints

then we do not need to include those in the residual vector 'r'
Including multiple coulomb scattering

- in a global track fit:
 - scattering angles explicitly included in track model
 - chisquare gets extra terms to constrain scattering angle
 - in the Kalman fit, it looks different, but it is essentially the same

- easiest way to propagate into alignment formalism: change the symbols
 - \(\mathbf{x} \): track parameters, including multiple scattering angles
 - \(\mathbf{m} \): measurement vector, including \(\hat{\theta} \)-hat
 - \(\mathbf{V} \): covariance matrix for the measurements, including \(\Theta \)
 - \(\mathbf{r} \): residual vector, including residuals for scattering angles

- master formulas for alignment chisquare minimization do not change
summarizing the formalism

- master equations for the derivatives

\[
\frac{d\chi^2}{d\alpha} = 2 \sum_{\text{tracks}} \left(\frac{\partial r^T}{\partial \alpha} \right) V^{-1} r
\]

\[
\frac{d^2\chi^2}{d\alpha^2} = 2 \sum_{\text{tracks}} \left(\frac{\partial r^T}{\partial \alpha} \right) V^{-1} \left(V - HCH^T \right) V^{-1} \left(\frac{\partial r}{\partial \alpha} \right)
\]

covariance matrix for (biased) residuals (usually called R)

- ingredients
 - residuals \(r \)
 - measurement covariance matrix \(V \) (diagonal)
 - derivatives of residuals to track parameters \(H \)
 - track covariance matrix \(C \)
 - derivatives of residuals to alignment parameters \(\partial r/\partial \alpha \)

- this is nothing new, but you might still like this write-up: Bocci and Hulsbergen, ATL-INDET-PUB-2007-009.
track models: 'global' versus 'kalman'

• model used in (ATLAS) 'global' track fit

• model used in usual 'Kalman-filter' track fit

• these models are not necessarily different: they should represent similar trajectories (otherwise, one of them is probably not optimal)

• these models are also not bound to the fitting method
 - we could write down a K-filter with the global track fit model and vice versa
 - it would just be rather inefficient to do so
track fitting: 'global' versus 'kalman'

• global fit method
 − covariance matrix of all track parameters calculated
 − used for alignment in e.g. MILLIPEDE, Atlas' 'Global Chisquare'

• Kalman filter
 − track model chosen such that not all track parameter correlations need to be calculated
 − global covariance matrix \mathbf{C} is incomplete: covariance matrix computed for every state vector \mathbf{x}_i but correlations are missing
 − problem for application of closed-form alignment procedure

• challenge: calculate the missing parts
 − hope that it isn't too hard
 − hope that it isn't too (CPU) time consuming: matrix \mathbf{C} can be very large
calculation of 'global' covariance C in Kalman filter

- math isn't more difficult than K-filter itself, but a bit hard to explain unless you are already familiar with Fruhwirth's notation
 - will still sketch calculation and ingredients
 - since you'll probably get lost anyway, I'll rush through it

- strategy
 - step 1: covariance matrix of neighbouring states after 'prediction step'
 - step 2: covariance matrix of neighbouring states after 'smoother step'
 - step 3: extend to non-neighbouring states

\[
C = \begin{pmatrix}
0 & 1,2 & 3 & 3 & 3 \\
0 & 1,2 & 3 & 3 & 3 \\
0 & 1,2 & 3 & 3 & 3 \\
0 & 1,2 & 3 & 3 & 3 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

- matrix of 5x5 matrices
- diagonal entries come out of standard K-filter
step 1: covariance for 'filtered' state k-1 and 'predicted' state k

- Kalman filter prediction (for linear models)

\[\mathbf{x}_{k-1} \rightarrow \mathbf{x}_k = F_{k-1} \mathbf{x}_{k-1} \]

- Covariance matrix for filtered state 'k-1' and prediction state 'k'

\[
C = \begin{pmatrix}
C_{k-1} & C_{k-1} F_{k-1}^T \\
F_{k-1} C_{k-1} & F_{k-1} C_{k-1} F_{k-1}^T + Q
\end{pmatrix}
\]

- This is trivial, except maybe the bit about the 'noise'
step 2: covariance of neighbouring smoothed states

- final result of the kalman filter consists of 'smoothed' states
 - state after information of all hits is processed
 - for alignment we need the correlation between smoothed states
 - Fruhwirth's notation for smoothed states: state x_k^n, covariance matrix C_k^n

- two strategies for 'smoothing'
 - smoothing formalism (see e.g. Fruhwirth, 1989)
 - bi-direction K-filter: runs filters in both directions and 'average'
 though latter is more popular now, we'll use former, but it doesn't matter

- suppose that we have a procedure to obtain the state at node 'k' after adding all remaining hits \{k, ..., n\}
 - how do we 'back-propagate' information from \{k,...,n\} to state k-1?
 - what happens to the covariance for states k-1 and k?
suppose we have two observables \((a,b)\) with covariance \(V\)

suppose we do something which makes that we know \(a\) better

\[
\begin{align*}
a & \rightarrow \tilde{a} \\
V_{aa} & \rightarrow \tilde{V}_{aa}
\end{align*}
\]

we can propagate this knowledge to \(b\) using

\[
\begin{align*}
\tilde{b} &= b + V_{ab} V_{aa}^{-1} (\tilde{a} - a) \\
\tilde{V}_{bb} &= V_{bb} - V_{ba} V_{aa}^{-1} (V_{aa} - \tilde{V}_{aa}) V_{aa}^{-1} V_{ab} \\
\tilde{V}_{ab} &= \tilde{V}_{aa} V_{aa}^{-1} V_{ab}
\end{align*}
\]

this is just another result of the least squares estimator

formulas also work when \(a\) and \(b\) are vectors
step 2: covariance of neighbouring smoothed states (II)

- we apply the propagation formulas from the previous page to state 'k'
 - \(a = \) predicted state \(k \), \(a\text{-tilde} = \) smoothed state \(k \)
 - \(b = \) filtered state \(k-1 \)
 - \(V_{aa} = C_k^{k-1} \) --> covariance for predicted state \(k \)
 - \(V_{aa\text{-tilde}} = C_k^n \) --> covariance for smoothed state \(k \)

- the result for the covariance matrix is

\[
C_{k-1}^m = C_k^{k-1} + A_{k-1} \left(C_k^m - C_k^{k-1} \right) A_{k-1}^T
\]

\[
C_{k-1,k}^m = A_{k-1} C_k^m
\]

- where I used the definition of the \textit{smoother gain matrix} (see Fruhwirth)

\[
A_{k-1} = C_k^{k-1} F_{k-1}^T \left(C_k^{k-1} \right)^{-1}
\]
step 3: covariance for all smoothed states

- so, we calculated the correlation between two neighbouring states
 - 1st 'off-diagonal' in the global covariance matrix \(C \)
 - how do we calculate the correlation between other states?

- consider states \(k-2 \) and \(k \)
 - correlation can only occur \textit{through} state \(k-1 \)
 - then it takes the following form (not entirely trivial)

\[
C^n_{k-2,k} = C^n_{k-2,k-1} \left(C^n_{k-1} \right)^{-1} C^n_{k-1,k}
\]

- now consider the next diagonal

\[
C^n_{k-3,k} = C^n_{k-3,k-2} \left(C^n_{k-2} \right)^{-1} C^n_{k-2,k-1} \left(C^n_{k-1} \right)^{-1} C^n_{k-1,k}
\]

- looks horrible enough, but we can reuse what we have already calculated

\[
C^n_{k-3,k} = C^n_{k-3,k-2} \left(C^n_{k-2} \right)^{-1} C^n_{k-2,k}
\]
final result

- recursive expressions for all diagonals in the matrix C

$$C_{k-1,l}^{n} = A_{k-1}C_{k,l}^{n} \quad k \leq l$$

- this is one multiplication of two 5x5 matrices for every off-diagonal 5x5 matrix

- requires 'smoother gain matrix' at every node

$$A_{k-1} = C_{k-1} F_{k-1}^{T} \left(C_{k}^{k-1}\right)^{-1} = \left(F_{k-1}\right)^{-1} \left(C_{k}^{k-1} - Q_{k}\right) \left(C_{k}^{k-1}\right)^{-1}$$

- to compute this matrix you need to have access to
 - all transport matrices (F)
 - all noise matrices (Q)
 - either the (forward) predicted result or the filtered result

- lucky in LHCb: default track fit keeps all this information with track
implementation for LHCb

• implemented calculation of matrix C in a Gaudi tool
 – it operates on 'fitted' tracks, using information stored in the K-filter nodes

• CPU time consumption
 – calculation not complicated, but CPU intensive
 • LHCb tracks have typically 50 hits
 • (symmetric) matrix C has typically ~ 30000 entries
 – surprisingly enough, time consumption not a big deal
 • O(1 ms) per track
 • relatively little compared to track fit itself
 • thanks to highly optimized matrix algebra (ROOT::Math::SMatrix)

• next step: actually use in LHCb's alignment framework
efficiently dealing with vertex constraints

- vertex and mass constraints are useful for constraining alignment degrees of freedom that are poorly constrained by single tracks
 - e.g. elliptical distortions, 'clocking' effect in central detectors
 - multi-track constraints effectively connect parts of detector that are never traversed simultaneously by single track

- usual way of including such constraints is with dedicated track fits
 - tracks fits that fit two tracks simultaneously, using common parameters for track origin
 - track fits that include a 'point' constraint from a vertex determined with other tracks

- however, if the global covariance matrix of the track parameters is available, we can do these this more efficiently
efficiently dealing with vertex constraints (II)

- assume you have a vertex fit that
 - takes track parameters 'at origin' with covariance as input
 - gives back new track parameters + covariance for all tracks

- using formulas on slide 15, 'propagate' this to other track parameters
 - in global fit: propagate to scattering angles
 - in kalman fit: propagate to all other states along track

- this allows to calculate
 - 'updated' residuals for all tracks
 - full covariance for all residuals on all tracks

- advantage: fast and simple, no dedicated track fits needed

- see also ATL-INDET-PUB-2007-009 (formula's only, no application yet)
conclusions

- calculated complete covariance matrix for K-filter tracks

- assuming that
 - we would like to use the standard K-filter track fit for alignment
 - we care about multiple scattering
 - we care about correlations between residuals (closed-form, a la MILLIPede)

then it is good to know that this is possible, at least on paper

- even if you do not care about these things, the result is still useful because it can also be used to add vertex constraints to the problem
 - interesting both for 'closed-form' and 'iterative' alignment procedure
 - interesting both with and without multiple scattering on the track
backup slides
Including multiple coulomb scattering (II)

• one more look at the first derivative

\[
\frac{d\chi^2}{d\alpha} = 2 \sum_{\text{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} \left(V - HCH^T \right) V^{-1} r
\]

residuals for scattering angles are here!

• do we really need to deal with the scattering angles explicitely? not if we use that the track is at minimum chisquare

\[
\frac{d\chi^2}{d\alpha} = 2 \sum_{\text{tracks}} \frac{\partial r}{\partial \alpha}^T V^{-1} r
\]

because V is diagonal and only 'hits' depend on alpha, only hit residuals remain

• in other words: make sure you use the right formula for the first derivative; otherwise, things become really complicated