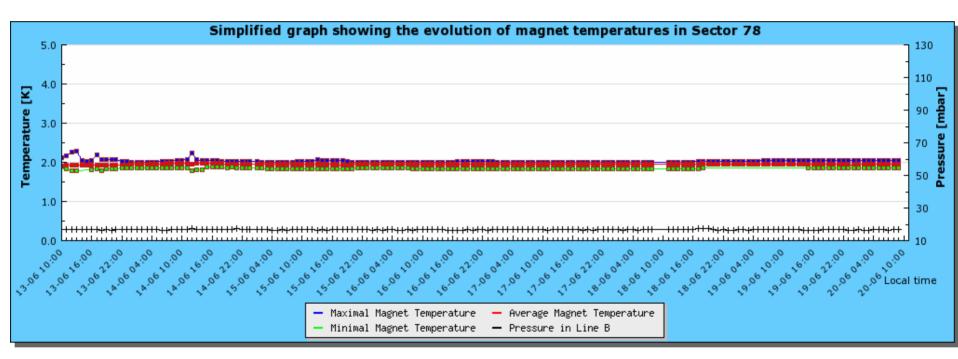
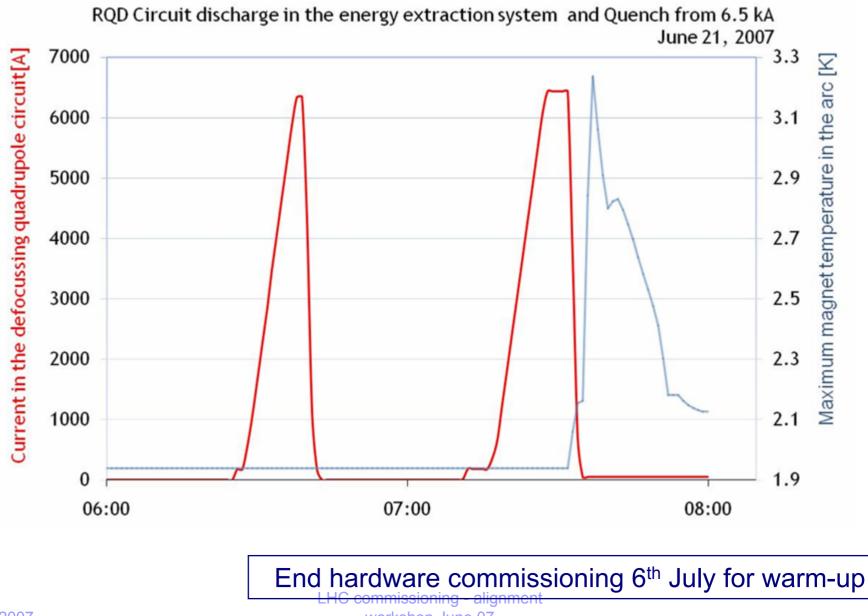
Status and plans for the startup of the LHC machine

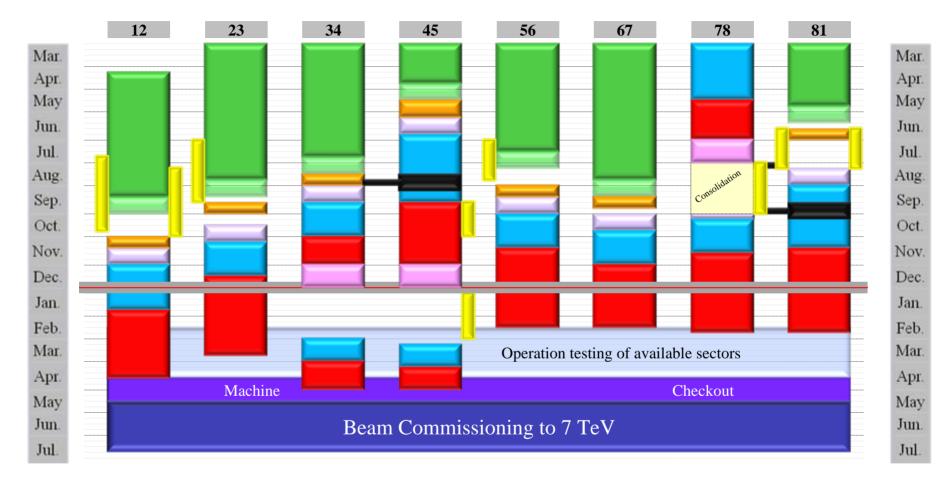

Plus some beam alignment questions

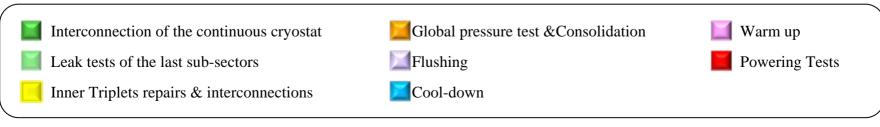
Mike Lamont AB/OP


Schedule slides c/o Lyn Evans (MAC 14/6/07)

Status: Installation & equipment commissioning

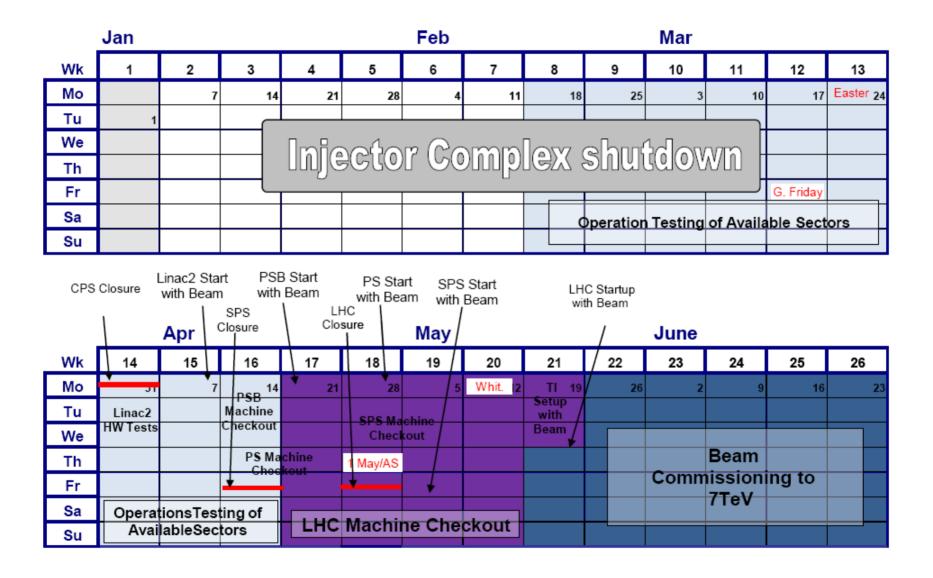
- Procurement problems of remaining components (DFBs, collimators) now settled
- Good progress of installation and interconnection work, proceeding at high pace in tunnel
- Numerous non-conformities intercepted by QA program, but resulting in added work and time
- Technical solutions found for inner triplet problems, but repair of already installed magnets will induce significant delays
- Commissioning of first sectors can proceed by isolating faulty triplets, but will have to be re-done with repaired triplets (needing additional warm-up/cooldown cycles)
- First sector cooled down to nominal temperature and operated with superfluid helium; teething problems with cold compressor operation have now been fixed.
- Power tests now proceeding.



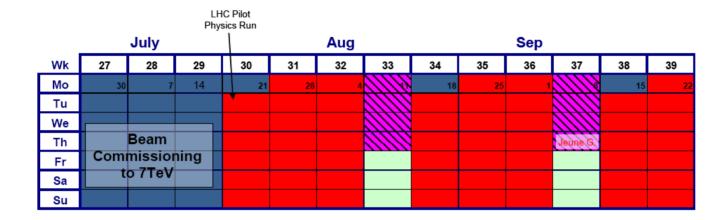

Sector 78

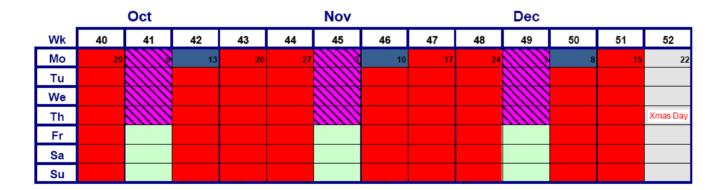
workshop June 07

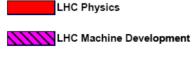
LHC Schedule - 2007/2008



LHC commissioning - alignment workshop June 07

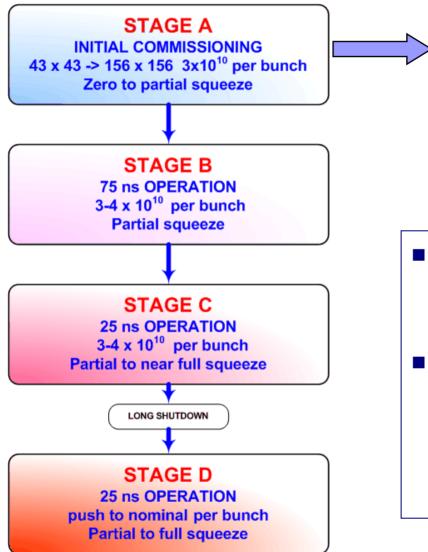

20/6/2007


General co-ordination schedule - Milestones


	Pressure test	Cool-down		Powering tests	
Sector 12	27-28 Oct. 07	03 Dec. 07	25 Jan. 08	28 Jan.08	18 Apr.08
Sector 23	15 -16 Sep.07	05 Nov. 07	14 Dec.07	17 Dec. 07	21 Mar. 08
Sector 24	11-12 Aug. 07	17 Sep. 07	26 Oct. 07	29 Oct. 07	30 Nov. 07
Sector 34		03 Mar. 08	28 Mar. 08	31 Mar. 08	02 May 08
Sector 45	Done	25 Jun. 07	14 Sep. 07	17 Sep. 07	30 Nov. 07
		10 Mar. 08	04 Apr. 08	07 Apr. 08	02 May 08
Sector 56	18 - 19 Aug. 07	01 Oct. 07	09 Nov. 07	12 Nov. 07	15 Feb.08
Sector 67	25-26 Sep. 07	22 Oct. 07	30 Nov. 07	03 Dec. 07	15 Feb.08
Sector 79	Dana	Done		Started	29 Jun. 07
Sector 78	Done	08 Oct. 07	16 Nov. 07	19 Nov. 07	22 Feb. 08
Sector 81	16-17 Jun. 07	27 Aug. 07	09 Nov. 07	12 Nov. 07	22 Feb. 08

2008 LHC Accelerator schedule

LHC Setup with beam


LHC Technical Stop

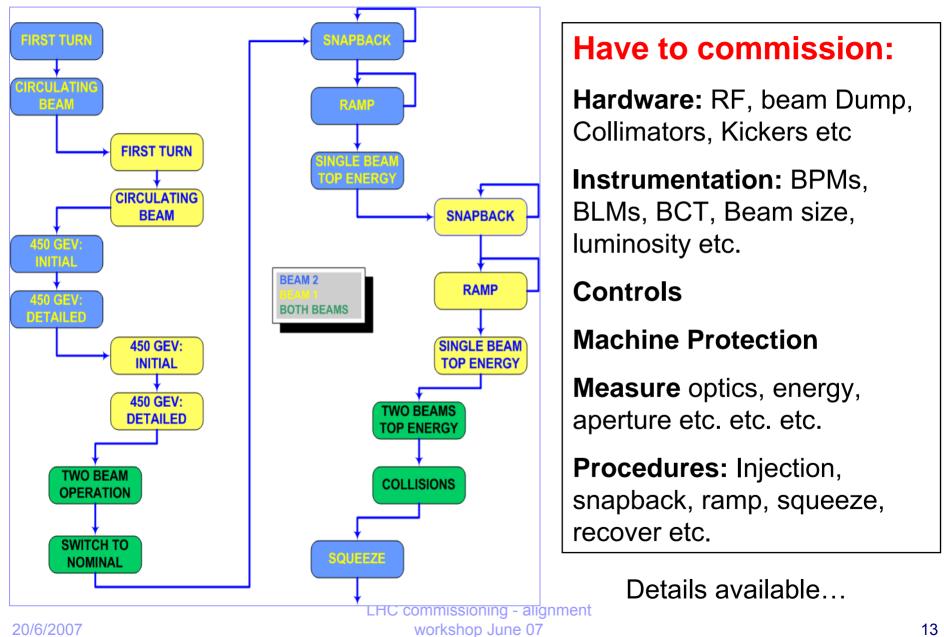
LHC commissioning - alignment workshop June 07

- Engineering run originally foreseen at end 2007 now precluded by delays in installation and equipment commissioning.
- 450 GeV operation now part of normal setting up procedure for beam commissioning to high-energy
- General schedule reassessed, accounting for inner triplet repairs and their impact on sector commissioning
 - > All technical systems commissioned to 7 TeV operation, and machine closed April 2008
 - Beam commissioning starts May 2008
 - First collisions at 14 TeV com July 2008
 - Pilot run pushed to 156 bunches for reaching 10³² cm⁻²s⁻¹ by end 2008
- No provision in success-oriented schedule for major mishaps, e.g. additional warm-up/cool-down of sector

Commissioning Plans

Commissioning stages

- Establish colliding beams as quickly as possible
- Safely
- Without compromising further progress


- Initial optics:
 - $\Box \beta^* = 11 \text{ m in IR } 1 \& 5$
 - $\square \beta^* = 10 \text{ m in IR } 2 \& 8$
- Crossing angles off
 - $\hfill\square$ 1, 12, 43, 156 bunches per beam
 - No parasitic encounters no long range beam-beam
 - □ Larger aperture in IRs

Phase A: Beam

- Start with Pilot Beam:
 - □ Single bunch, 5 to 10×10^9 protons
- Intermediate single:
 - □ 3 to 4 x 10¹⁰ ppb
- 4 bunches etc. pushing towards...
- 43 (and possibly 156) bunches
 - □ 3 to 4 x 10¹⁰ ppb (3.1 mA 2 MJ)

- Good for Instrumentation (bunch spacing), RF, vacuum...
- Relatively safe beam
 - Reduced demands on beam dump system, Collimation & Machine protection

Stage A: Commissioning Phases

Beam commissioning to 7 TeV collisions

		Rings	Total [days]
1	Injection and first turn	2	4
2	Circulating beam	2	3
3	450 GeV - initial	2	4
4	450 GeV - detailed	2	5
5	450 GeV - two beams	1	1
6	Snapback - single beam	2	3
7	Ramp - single beam	2	6
8	Ramp - both beams	1	2
9	7 TeV - setup for physics	1	2
10	Physics un-squeezed	1	-
	TOTAL TO FIRST COLLISIONS		30
11	Commission squeeze	2	6
12	Increase Intensity	2	6
13	Set-up physics - partially squeezed.	1	2
14	Pilot physics run		

- Approx 30 days of beam time to establish first collisions
 - Un-squeezed
 - Low intensity
- Approx 2 months elapsed time
 Given optimistic machine availability
- Continued commissioning thereafter
 - Increase intensity
 - Squeeze

Stage A - Luminosities

- 1 to N to 43 to 156 bunches per beam
- N bunches displaced in one beam for LHCb
- Pushing gradually one or all of:
 - Bunches per beam
 - Squeeze
 - Bunch intensity

IP 1 & 5


Bunches	β*	l _b	Luminosity	Event rate
1 x 1	18	10 ¹⁰	10 ²⁷	Low
43 x 43	18	3 x 10 ¹⁰	3.8 x 10 ²⁹	0.05
43 x 43	4	3 x 10 ¹⁰	1.7 x 10 ³⁰	0.21
43 x 43	2	4 x 10 ¹⁰	6.1 x 10 ³⁰	0.76
156 x 156	4	4 x 10 ¹⁰	1.1 x 10 ³¹	0.38
156 x 156	4	9 x 10 ¹⁰	5.6 x10 ³¹	1.9
156 x 156	2	9 x 10 ¹⁰	1.1 x10 ³²	3.9

16

Stage B – 75ns

- Parameter tolerances:
 - □ Tightened up. Optics/beta beating under control
- Commission crossing angles.
 - $\hfill\square$ Injection, ramp and squeeze
 - □ long range beam-beam, effect on dynamic aperture,
- Need for feedback
 - orbit plus adequate control of tune and chromaticity through snapback.
- Lifetime and background optimization in physics
 - with a crossing angle and reduced aperture needs to be mastered.
- Bunch train bunch-to-bunch variations, implications for beam instrumentation.
- Emittance conservation through the cycle

Plus Machine Protection with increased intensity

- Will start with warm vacuum chambers baked and NEG activated, both in the experimental region and in the LSS.
 - The static pressure after this is expected to be of order 10⁻¹¹ mbar (as already achieved in ALICE).
- Cold sections will be simply cooled
- Followed by conditioning with beam:
 - □ Dynamic vacuum: increase beam current →induced multipacting → lower secondary electron emissions.
 - □ Things get a bit worse.
- After conditioning things will improve.

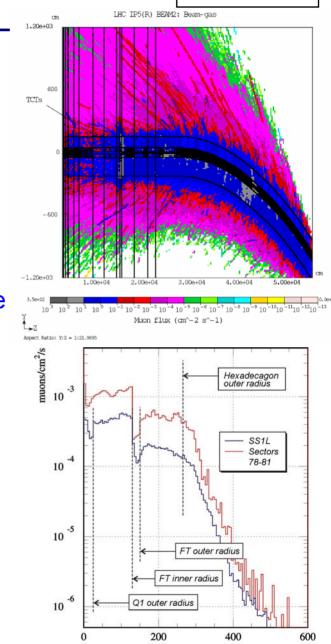
Vacuum

	Stage 1		Stage 2	Nominal
Months of operation	4		7	7
Days of operation	100		175	175
Bunches	1/43/156		936/2808	2808
Protons/bunch	10 ¹⁰ -9 10 ¹⁰		10 ¹⁰ -9 10 ¹⁰	$1.1 \ 10^{10}$
Protons	10^{10} -1.4 10^{13}	(.7–9.8) 10 ¹³	$3.2 \ 10^{14}$
Current (mA)	0.02 - 25		70 - 80	582
Average current (mA)	8		140	582

\mathbf{n}_b	43	156	2808
Start-up	1.8×10^{12}	5.7×10^{12}	4.3×10^{13}
Nominal	4.2×10^{11}	6.3×10^{11}	5.3×10^{12}

Table 3: Average H_2 equivalent residual gas density, [mol/m³] in the IR1 & 5 at the machine start-up and at nominal operation after the machine conditioning with the beam of different intensity.

Residual gas density estimations in LHC Insertion Regions IR1 and IR5 and the experimental regions of ATLAS and CMS for different beam operations. Adriana Rossi LPR 783


Nikolai Mokhov

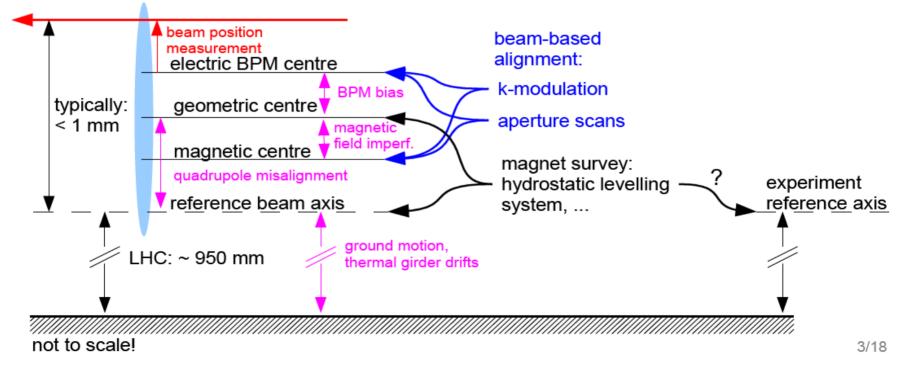
Background (briefly!)

- Residual gas within experiments
 Baked out etc. low rates
- Residual gas in adjacent straight sections
 See Adriana Rossi
- Gas pressure in adjacent cold sectors
 - □ Residual gas pressures expected in the cold arcs ≥ 20 times those in the cold sections of the LSS
 - Elastic scattering into IRs
 - \Box Muons \rightarrow
- Inefficiency of cleaning in IR7 & IR3
 - Tertiary halo on tertiary collimators
 - □ Not an issue initially

See: M. Huhtinen, V. Talanov, G. Corti, N. Mokhov et al

G. Corti, V. Talanov

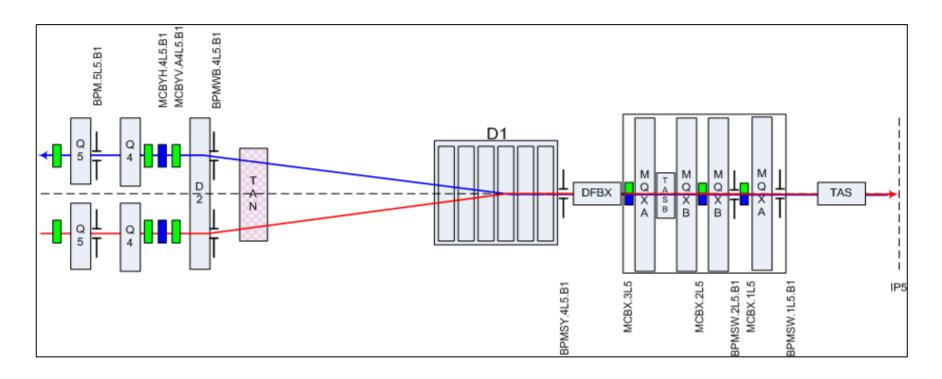
20/6/2007


r, cm 21

Transverse crossing point etc.

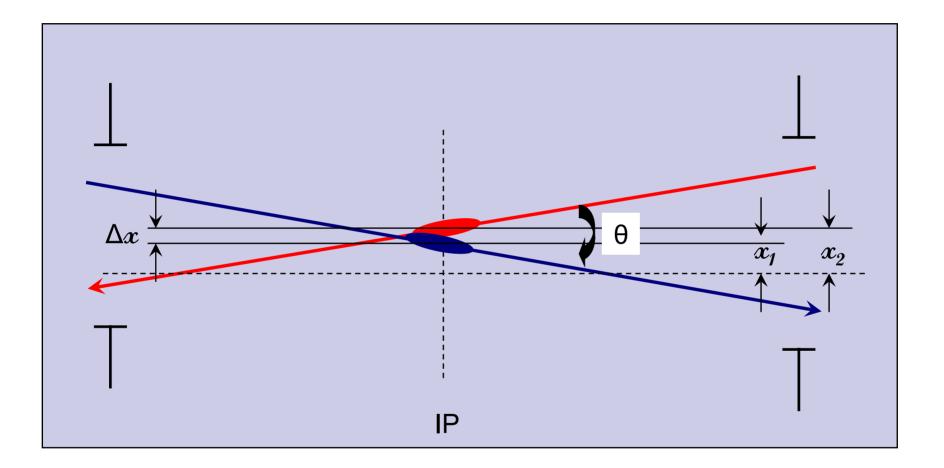
A lot of subtleties here – so just some pointers

Alignment Reference System Definition


- Beam stability analysis depends on the choice of reference system:
 - beam position measurements (different for B1 & B2!)
 - magnetic quadrupole centre (minimising feed-down effects)
 - geometric quadrupole centre (maintaining aperture constraints)
 - external reference
- Some definitions:

Final Focus Stability, Ralph.Steinhagen@CERN.ch, 2007-06-24

LHC commissioning - alignment workshop June 07

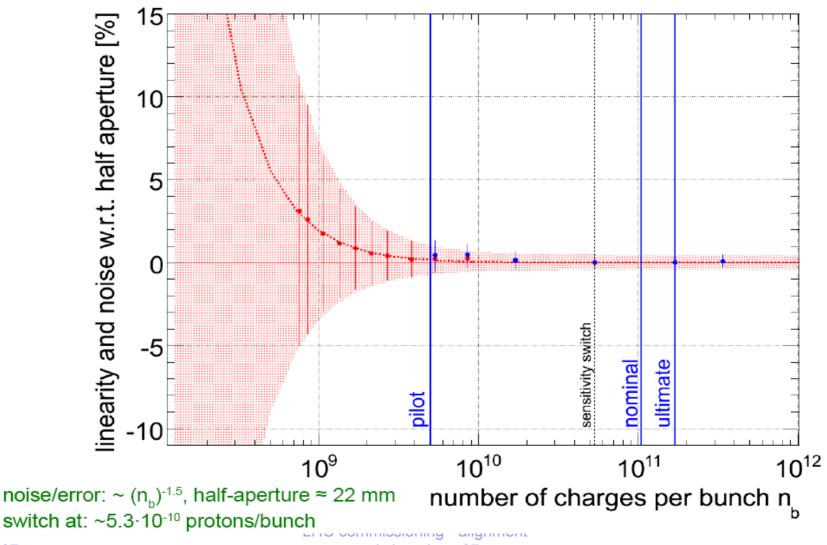

Transverse vertex position

Inner triplet BPMs

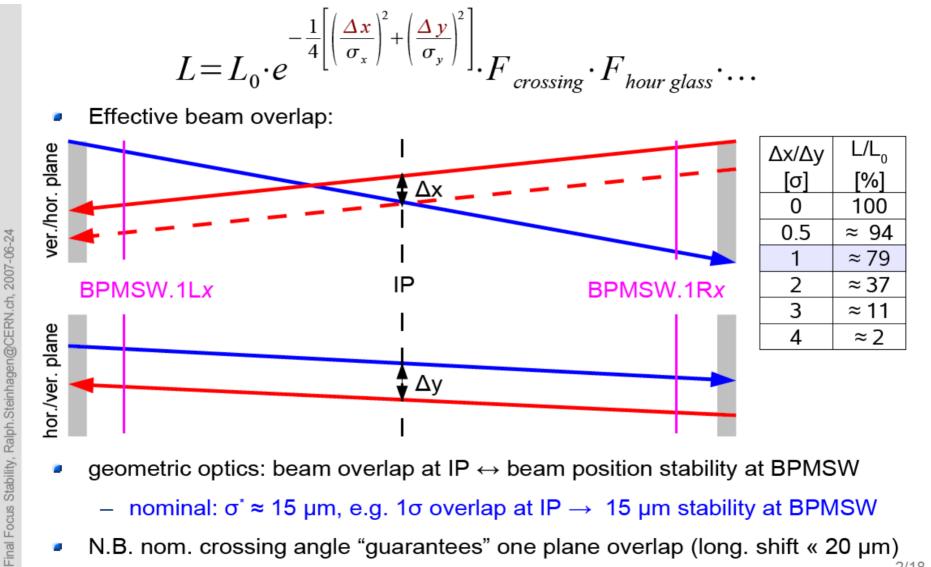
- Directional strip-line couplers
- Capable of distinguishing between counter rotating beams in the same beam pipe.
- □ Have one either side at about 21 m from IP in front of Q1
 - extrapolate straight through IP

BPMSW

In both planes


BPM errors

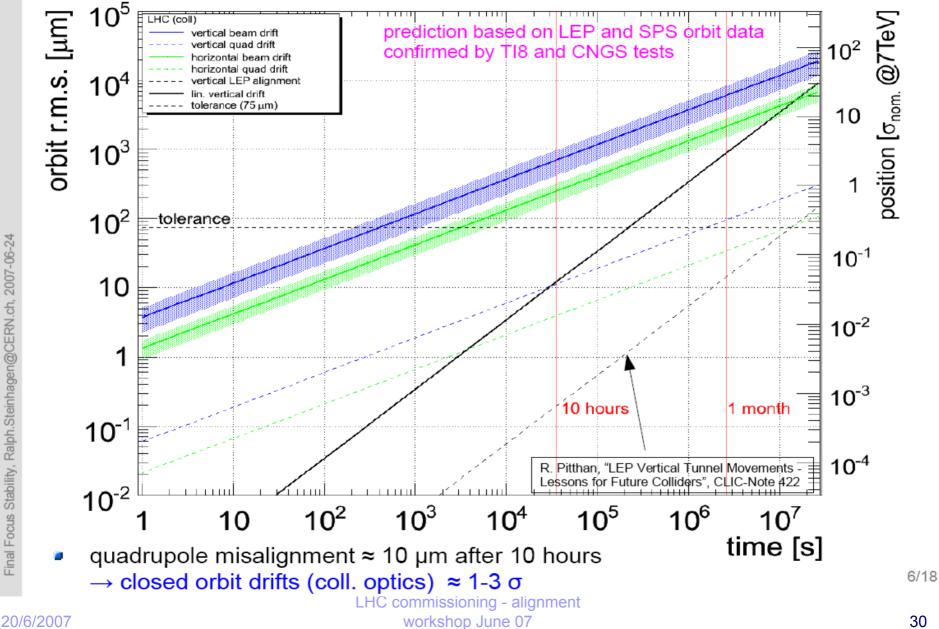
Beam Position Measurement:


- □ electrical BPM bias: 100 µm r.m.s.
- □ electrical BPM centre w.r.t. geometric quad. centre: 200 µm r.m.s.
 - after aperture scan: < 50-100 μm r.m.s.
- □ electrical BPM centre w.r.t. geometric quad. centre: 200 µm r.m.s.
 - after k-modulation: < 50 (5?) µm</p>
- Survey group targets for magnet alignment:
 - 0.2 mm r.m.s. globally
 - □ 0.1 mm r.m.s. as an average over 10 neighbouring magnets
 - □ N.B. Orbit FB: working assumption: 0.5 mm r.m.s.

From threading the first pilot to 43x43 bunches

- 43x43 operation: max. intensity 4.10¹⁰ protons/bunch
- \rightarrow No gain-switching: BPMs will always operate at 'high' sensitivity

Luminosity stability


- geometric optics: beam overlap at IP ↔ beam position stability at BPMSW
 - nominal: $\sigma^* \approx 15 \,\mu\text{m}$, e.g. 1σ overlap at IP $\rightarrow 15 \,\mu\text{m}$ stability at BPMSW
- N.B. nom. crossing angle "guarantees" one plane overlap (long. shift $\ll 20 \ \mu m$)

Extra high resolution pick-ups?

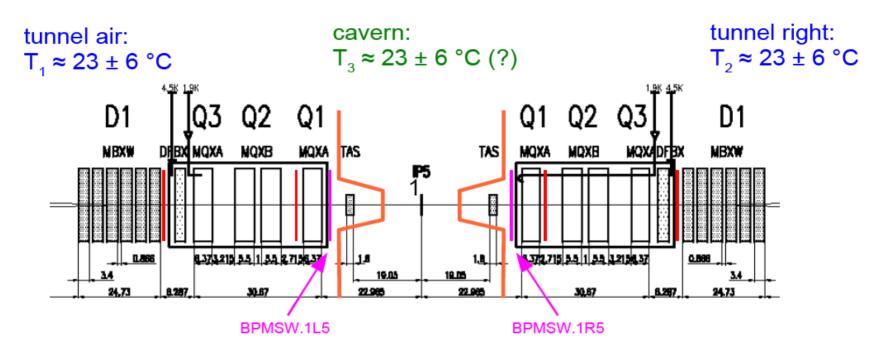
Request for an improved BPM system at the IP.

- Anyway needed for high-β Totem/Atlas (assume 5 and 10 µm resolution in their TDRs).
- For operation with 0 crossing angle and a limited number of bunches, it should be possible to eliminate offsets using (non-directional) button pickups and electronics for beam1 and beam2, aiming for $\sigma_{BPM} = 10 \ \mu m$ resolution
- Implies design, construction and installation of a new combined pick-up system :
 - Strip-line for normal operation with crossing angle and many bunches
 - Button to measure the zero crossing angle angle and adjust collisions in early operation etc.
 - Would also be useful for VdMSs

Ground motion

Thermal Expansion of Girders

- Mechanism: Orbit feedback intrinsically aligns with respect to the BPMs that are either attached to the quadrupoles or have similar girders
- Thermal expansion, steel α_{steel} ≈ 10-17·10⁻⁶ K⁻¹ (BS:970, DIN18800):


$$\Delta x = x_0 \cdot \alpha \cdot \Delta T$$

- Systematic shift of beam reference system with respect to non-moving external reference (e.g. potentially collimators):
 - − Cryo-Magnets: $x_0 \ge (340 \pm 20) \text{ mm}$ → $\Delta x \approx 3.4 5.8 \text{ µm/°C}$
 - − Warm equipment: $x_0 \approx 950$ mm → $\Delta x \approx 9.5 16$ µm/°C
- The inlet temperature is stabilised to about ±1°C
 - temperature changes shouldn't pose a problem for even IRs

8/18

Thermal Expansion of Girders - IRs

Left-Right temperature gradient:

- $\bullet \quad \mathbf{T}_1 \neq \mathbf{T}_2 \neq \mathbf{T}_3$
 - powering of arc equipment (CODs, ...) \rightarrow dyn. heat-load asymmetry
 - IR4 (RF, BI) → IP5 ← IR6 (beam extraction)
 - Working assumption: ΔT= |T₂-T₁| ≈ ± 1...2 °C

 $\rightarrow \Delta x_{\text{thermal}} \thickapprox 16\text{-}32 \; \mu m$

Final Focus Stability. Ralph.Steinhagen@CERN.ch. 2007-06-24

Transverse beam size at IP

The further we squeeze, the smaller the beam size at the IP, and thus the smaller the beam movement to luminosity resolution.

beta*	Nominal beam size at
	IP (µm)
17	92
11	74
9	67
5	50
1	22
0.55	17

- Emittance variation/blow-up a definite possibility
 - □ Fill-to-fill, bunch-to-bunch...
- Transverse beam size from one of:
 - Synchrotron Light Monitor, Rest Gas Monitor or Wire Scanner plus optics measurements - difficult
- Van der Meer scans

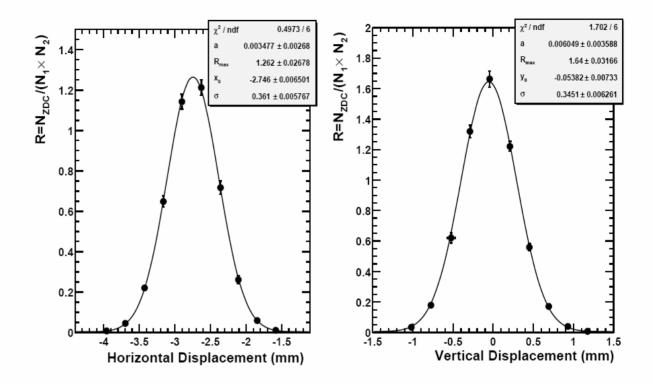


Figure 2.4: The $R = N_{ZDC}/(N_1N_2)$ vs. the measured beam horizontal (left) and vertical (right) position and fit with a Gaussian function $R = a + R_{max} \exp[-(x - x_0)^2/2\sigma^2]$.

Figure 2.4 shows the calculated $N_{ZDC}/(N_1N_2)$ (in unit of 10^{-18} Hz) vs. the beam horizontal and vertical positions and fit with a Gaussian function plus a constant representing any possible background. From the fit, we can extrapolate the beam profiles $\sigma_{Vx} = 361 \pm 6 \ \mu m$ and $\sigma_{Vy} = 345 \pm 6 \ \mu m$.

- Special optics without triplet powering have been designed
- Beam trajectory in the IR without quadrupoles can be used as a reference for triplet alignment.
 - □ Aim to avoid orbit distortions
 - □ Optics errors

Longitudinal crossing point

- RMS bunch length at 7 TeV = 7.55 cm, 16 MV
- No longitudinal feedback during commissioning:
 - Injection errors not compensated for second and subsequent injections
 - (Anyway for nominal beams there is planned blow-up with RF noise during the ramp (IBS))
- Re-phasing (coarse and fine) at top of ramp
 - Adjustment of collision point to very high precision
 - □ Fully reproducible from fill to fill
 - LEP: One RF system two beams
 - LHC: Two independent RF systems that can be adjusted as desired

Conclusions 1/3

Beam commissioning

- □ Should start May 2008
- 2 months to get first collisions
- □ First collisions low intensity, un-squeezed.
- □ We will be careful.

Phase A

- □ No crossing angle
- □ Gradual increase in current up to 156 bunches/beam
- □ Pilot physics: un-squeezed to partial squeeze
- $\Box \le 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Collimation

- □ Phase 1 scheme will be in place
- □ Full and appropriate machine protection will be pursued.

http://cern.ch/lhccwg/

- "How well do you (we) know the beamline at the interaction point?"
 - □ without beam-based alignment: $\Delta x \approx 300-600 \ \mu m r.m.s.$
 - for details: LHC Collimation WG Meeting #79
 - □ with beam-based alignment:
 - after k-modulation, Lumi-scans ("guess")

 $\Delta x \approx 5 \ \mu m r.m.s.$

Conclusions 3/3

"Will it change within a run or to the next run/fill?" - Yes

- □ stability without orbit feedback but "perfect" feed-forward of last cycle
 - Δx ≈ 300 − 600 µm r.m.s.
 - for details: LHC Collimation WG Meeting #79
- □ stability with orbit feedback:
 - w.r.t. geometric cold quad. centre:
 - □ assumes nominal FB operation
 - w.r.t. geometric warm quad. centre:
 limited by thermal gradients
- □ w.r.t. ext. reference (e.g. CMS detector):
- ∆x ≈ 30-50 µm r.m.s.

∆x ≈ 20-30 µm r.m.s.

∆x ≈ 5-7 µm r.m.s.

- limited by ground motion and thermal drifts
- □ Numbers assume perfect fill-to-fill beam parameters reproducibility
- □ does not include long-term BPM stability to be verified

Particular thanks to Ralph Steinhagen