

CMS: Alignment work and data flow

Jim Pivarski, Alexei Safonov

Texas A&M University

26 June, 2007

General direction of this talk

- Physical data flow: from raw data to alignment corrections
- Software architecture
- Monitoring alignment output
- Alignment exercises in Monte Carlo and data

Tracking systems at CMS

Silicon tracker and pixel detector: 15,000 modules

Muon detector: track sees 18–45 layers: an independent tracking system in its own right

Tracking systems at CMS

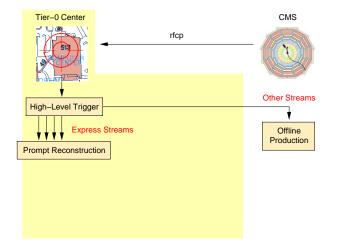
Silicon tracker and pixel detector: 15,000 modules

Muon detector: track sees 18–45 layers: an independent tracking system in its own right

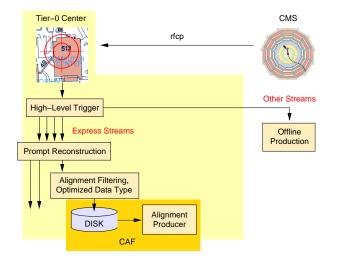
This talk will be both about alignment of both

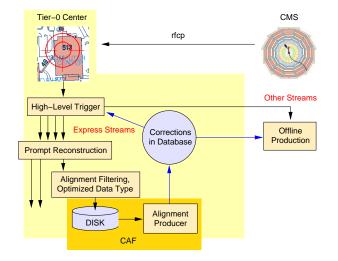
Physical data flow

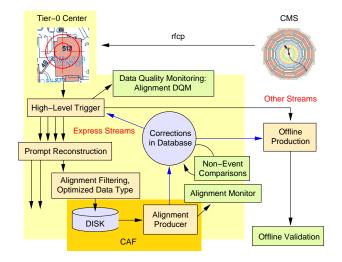
Physical data flow


Motivation for prompt alignment

- CMS High-Level Trigger uses the same reconstruction software as offline, including alignment corrections
- Alignment results improve the performance of our trigger
- We want an infrastructure to immediately align on tracks, as they are read out of the detector

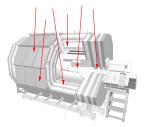


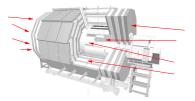




Triggers and Express Stream

- Both tracking systems use muons for alignment
- ► Accept events from any trigger providing muons: single μ , di- μ , J/ψ , Υ , $Z \rightarrow \mu\mu$, μ with jets...
- Also include commissioning streams which select only on the basis of hardware trigger or partial High Level Trigger decisions




Triggers and Express Stream

- Both tracking systems use muons for alignment
- ► Accept events from any trigger providing muons: single μ , di- μ , J/ψ , Υ , $Z \rightarrow \mu\mu$, μ with jets...
- Also include commissioning streams which select only on the basis of hardware trigger or partial High Level Trigger decisions
- Express Stream for alignment, calibration, monitoring, discovery channels (5–10% in normal running, 25% at first)
- Alignment stream is filtered to include only tracks/hits used for alignment (3k/event tracker, 10k/event muon)

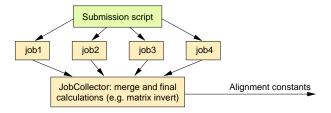
Before first collisions

Cosmic rays, especially for barrels

Beam-halo, especially for endcaps

 \blacktriangleright A special pair of scintillator paddles added to extend η range of beam-halo trigger for tracker

Software


Common framework

- Common framework for
 - (a) all subdetectors
 - Muon system and Si-tracker use the same tracking data-formats and fitting algorithms
 - (b) all algorithms
 - HIP, MillePede II, and Kalman are plug-in modules
- Centrally manages
 - hierarchical geometry description with uncertainties and correlations at each level
 - coordinate transformations and derivatives
 - fixing/floating components and parameters
 - application of survey constraints
 - database access

Built-in parallel-processing

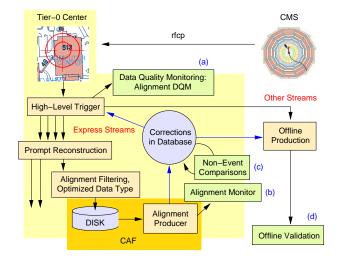
- Large alignment job can be split into sub-jobs
- Sub-jobs store partial calculations in temporary ROOT files
- JobCollector merges partial results, performs final calculation
- Monitoring histograms are merged in the same way

 Total time is determined by the last sub-job to finish, so alignment requires a dedicated farm

Monitoring

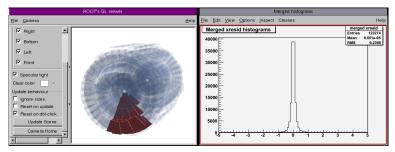
Jim Pivarski 18/30

Monitoring



Four stages of monitoring

- (a) Specialized plots for shifters in Data Quality Monitor(e.g. Z peak, agreement between overlapping chambers)
- (b) Monitoring plots built into the alignment process
- (c) Non-event level comparison of alignment geometries ("how different are these geometries?"), comparison with hardware/survey, and as a function of time
- (d) Last check that we put the right thing into the database (same plots as (a))

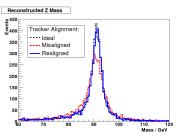

Four stages of monitoring

Expert systems and routine plots

- Expert systems
 - Discover and zoom into problem areas
 - Manually read alignment corrections off of profiles

Routine plots

- Concise set of powerful alignment indicators
- Will be derived from experience with expert systems

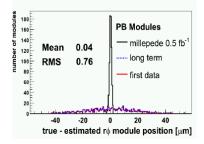

Alignment Exercises

Alignment Exercises

CSA06: Computing Software Analysis 2006

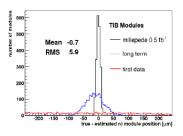
- $\frac{1}{4}$ of anticipated 2008 data
- Emphasis on computing and work-flow, rather than alignment quality

- Full simulation of Si-tracker alignment
 - 2 million misaligned $Z \rightarrow \mu \mu$
 - HIP algorithm on a prototype of the alignemnt farm
 - Read/wrote geometry from database on-the-fly
 - Event sample re-reconstructed with corrections
- Muon alignment tested the possibility of aligning at a remote Tier-2 site, with a simplified MillePede II algorithm



Twice the data

- Mixed sample selected by High Level Trigger for realism
- Filter using simple p_T cut and using di- μ mass
- Tracker alignment will use the full MillePede II algorithm
- Muon alignment will do a full simulation with HIP (analogous to tracker in CSA06)
- ► Full exercise starts September 15

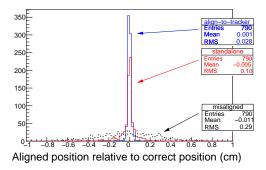


Demonstration of complete MillePede II tracker alignment

Pixel barrel RMS < 1 μm

Pixel barrel alignment an order of magnitude better than in the long term scenario.

TIB RMS = $6 \mu m$


The inner barrel modules are well aligned in the r coordinate.

- 2 GB RAM, 1 h 40 min CPU (10 min matrix inversion)
- 3.5 million muon tracks

Demonstration of muon chamber alignment

- (a) align muon system to tracker
- (b) align standalone muon system without external reference

- 6 degrees of freedom, realistic initial misalignment
- 30 min per iteration (only standalone requires iterations)
- 16,000 muon tracks

Analysis of cosmic ray data underway

- 25% of Si-tracker is taking data in the Tracker Integration Facility (bât 186)
- 2 million cosmic rays (2 months)
- All three algorithms are currently being applied

Analysis of cosmic ray data underway

- 25% of Si-tracker is taking data in the Tracker Integration Facility (bât 186)
- 2 million cosmic rays (2 months)
- All three algorithms are currently being applied
- 21 muon chambers collected data in last September's Magnet Test Cosmics Challenge
- ► HIP and MillePede II are currently being applied

Analysis of cosmic ray data underway

- 25% of Si-tracker is taking data in the Tracker Integration Facility (bât 186)
- 2 million cosmic rays (2 months)
- All three algorithms are currently being applied
- 21 muon chambers collected data in last September's Magnet Test Cosmics Challenge
- ► HIP and MillePede II are currently being applied
- Real-data alignment efforts will continue with cosmic rays from upcoming Slice Tests, Global-Running-at-End-of-Months, local cosmic runs, and beam-halo from beam commissioning

Conclusions

- Infrastructure (farms, data streams) under development for prompt alignment
- Opportunities for human monitoring
- Proof-of-principle with full-scale exercises
- Cosmic ray alignments are happening right now