ALICE
 First Alignment Plans

Andrea Dainese
INFN - Legnaro
for the ALICE Collaboration

Contents

- ALICE detector layout for first data (end 07)
- Plans for first alignment (cosmics and first pp)
* Inner Tracking System (ITS)
\& Outer barrel detectors (TPC)
\& Relative alignment of ITS and TPC
+ Muon spectrometer
- Summary

The ALICE Detector

व国

$|n|<0.9, B=0.5^{-}$T
TPC + Inner Tracking System

+ TRD (e/ π) + TOF (hadr. id)

muon arm

$-4<\eta<-2.5$
Size: 16×26 meters
Weight: 10,000 tons

Inner Tracking System (ITS)
SSD
Silicon Pixel Detector (SPD):

- ~10M channels
- 240 alignable vol. (60 ladders)

Silicon Drift Detector (SDD):

- ~133k channels
- 260 alignable vol. (36 ladders)

Silicon Strip Detector (SSD):

- ~2.6M channels
- 1698 alignable vol. (72 ladders)

ITS total:
 2198 alignable sensitive volumes
 $\rightarrow 13188$ d.o.f.

ITS detector resolutions \& target alignment precisions

detector local c.s.: $x_{\text {loc }} \sim \gamma_{\text {glob }}, y_{l o c} \sim r_{\text {glob }}, z_{\text {loc }}=z_{\text {glob }}$

	$\begin{gathered} \text { SPD } \\ (\mathrm{r}=4 \& 7 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} \text { SDD } \\ (\mathrm{r}=14 \& 24 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} \text { SSD } \\ (\mathrm{r}=39 \& 44 \mathrm{~cm}) \end{gathered}$
nom. resolutions $\mathrm{x}_{\mathrm{loc}} \times \mathrm{z}_{10 c}\left[\mu \mathrm{~m}^{2}\right]$	12×120	38×20	20×830
full mis. (shifts) $\mathrm{x}_{\text {loc }} \times \mathrm{y}_{\text {loc }} \times \mathrm{z}_{\text {loc }}\left[\mu \mathrm{m}^{3}\right]$	$20 \times 20 \times 20$	$45 \times 45 \times 45$	$30 \times 30 \times 100$
residual mis. (shifts) $\mathrm{x}_{\mathrm{loc}} \times \mathrm{y}_{\mathrm{loc}} \times \mathrm{z}_{\mathrm{loc}}\left[\mu \mathrm{m}^{3}\right]$	$10 \times 10 \times 20$	$20 \times 20 \times 20$	$15 \times 15 \times 100$
rotations (mrad) around $\mathrm{x}_{\mathrm{loc}}, \mathrm{y}_{\mathrm{loc}}, \mathrm{z}_{\text {loc }}$	0.3	0.3	0.3

- Full: initial misalignments as expected from the mechanical imprecision after installation, actually set to 20-45 $\mu \mathrm{m}$ at the sensor level, probably higher at the ladder or layer level ($\sim 100 \mu \mathrm{~m}$)
- Residual: expected misalignment left after applying the realignment machinery, taken $\sim 0.7 \times$ resol. $\rightarrow \sim 20 \%$ degradation of the resolution

Impact of ITS misalignment on tracking performance

- Track impact parameter $\left(\mathrm{d}_{0}\right)$ resolution is crucial for the rich heavy flavour program of ALICE (in pp and Pb-Pb)
- Effect of misalignment on d_{0}, p_{t}, vertex resolutions studied by reconstructing misaligned events with ideal geometry

Alignment awareness of the reconstruction tested by reconstructing misaligned events with the input misaligned geometry

ITS: first alignment with tracks

- Data sets: cosmics + first pp collisions (and beam gas)
* use cocktail of tracks from cosmics and pp to cover full detector surface and to maximize correlations among volumes
- Start with B off, then switch on B (0.5 T for barrel \rightarrow possibility to select highmomentum tracks for alignment)
- General strategy (not yet finalized):

1) start with layers easier to calibrate: pixels and strips
$>$ good resol. in $\mathrm{r} \phi(12-20 \mu \mathrm{~m})$, worse in $\mathrm{z}(120-830 \mu \mathrm{~m})$
$>$ ITS z resol. provided by drifts anode coord. $(20 \mu \mathrm{~m}) \rightarrow$ easily calibrated \rightarrow can be included from the beginning in alignment chain
2) global ITS alignment relative to TPC (already internally aligned)
3) finally, inclusion of silicon drifts (drift coord: $r \phi$), which probably need longer calibration (interplay between alignment and calibration)

- Track-based alignment methods (work in progress):

4 local: iterative method based on residuals minimization
4 global: Millepede 1 (already ported to ALICE for muon arm alignment)

Preparation for cosmics data (1)

- Expected muon rate through ITS inner layer ($\sim 200 \mathrm{~cm}^{2}, \sim 40 \mathrm{~m}$ underground): $\sim 0.02 \mathrm{~Hz}\left(\rightarrow \sim 10^{4} \mu /\right.$ week $)$
- Trigger on cosmics (for ITS alignment) with SPD layers:
* FastOR (FO) of the 20 chips on 2 half-staves
* For each half-barrel (A side, C side):
> 20 FOs outer layer, 10 FOs inner layer
- Any logic combination of these 30 FOs

* Option being considered for cosmics: Double Layer coincidence (≥ 2 FOs inn layer $\& \geq 2 F O s$ out layer)
purity (fraction with 1μ with 4 SPD hits): $\sim 97 \%$, inefficiency (fraction of lost μ with 4 SPD hits): ~19\%

Preparation for cosmics data (2)

- Cosmics at ALICE: $p>10 \mathrm{GeV} / \mathrm{c},<p>\sim 20 \mathrm{GeV} / \mathrm{C}$ (Hebbeker, Timmermans, 2001)
- Cosmics tracking in ITS:

4 stand-alone ITS tracking (cluster-grouping algo), starting from

* "fake" vertex built from the two tracklets in inner two layers
* 98% efficiency (12 points, 6inward+6outward) for muons that leave 12 hits, with $B=0$ and $B=0.5 T$
4 tracks prolongation from TPC to ITS being optimized for cosmics
- Preparing first d_{0} resolution meas. by cosmics two-track matching

Cosmics in the ITS

- 50k μ 's through inner ITS layer (~5
- Track multiplicity per module:

- Volume correlations. Number of modules correlated to a given module:

SPD inner

Nvolumes correlated to a given SPD1 vol. (6pts tracks)

SPD1: hresSumPhi

2nd LHC Detector Alignment wS - CERN, Residuals (cm)
Andrea Dainese
Residuals (cm) about 5 weeks of cosmics

INFN
 ITS alignment with tracks: Millepede

M.Lunardon, S.Moretto

- (Well-known) Millepede principle: the measured value (points coords) can be expressed as a linear (\rightarrow small deviations) function of the global (d_{i}, align. params) and local (δ_{i}, track params) parameters

$$
z=\underbrace{a_{1} \cdot d_{1}+a_{2} \cdot d_{2}+\ldots a_{n} \cdot d_{n}}_{\text {global parameters }}+\underbrace{\alpha_{1} \cdot \delta_{1}+\alpha_{2} \cdot \delta_{2}+\ldots \alpha_{\nu} \cdot \delta_{\nu}}_{\text {local parameters }}=\sum_{i=1}^{n} a_{j} \cdot d_{j}+\sum_{j=1}^{\nu} \alpha_{j} \cdot \delta_{j}
$$

- ITS implementation:
- use AliMillepede class (Millepede1 ported to ALICE for muon arm)
+ configuration (text file): list of modules to be aligned, constraints, initial geometry
+ tracks as lists of points (AliTrackPointArray)
4 setting equations:
$>$ reference track with simple linear fit (starting with $\mathrm{B}=0$)
$>$ evaluation of residuals w.r.t. reference track
> derivatives of residuals w.r.t. local and global params, numerically (ROOT TF1)

INFN

ITS alignment with tracks: Millepede - First tests -

M.Lunardon, S.Moretto

- Set of cosmic-like tracks crossing a small number of modules (4 SPD modules, 8 SDD modules, 4 SSD modules), with 3 d.o.f. per module (2 shifts, 1 rotation): total of 16×3 d.o.f.

RMS of (Par $_{\text {millepede }}$ - Par $_{\text {Input }}$) vs. \# of used tracks

n. of tracks

n. of tracks
θ rot, about $y_{\text {loc }}$ (deg)

n. of tracks

- Promising first results: reach the level of residual misalignment with <1k cosmics tracks (few weeks)

Readout chambers:
$18+18$ inner chambers $18+18$ outer chambers 72 volumes to be aligned

- Alignment requirements: given by precision of track parameters (high $-p_{\mathrm{t}}$ tracks)
- $\mathrm{r} \phi, \mathrm{z} \sim 100 \mu \mathrm{~m}$
- $\phi, \theta \sim 0.1 \mathrm{mrad}$
- Alignment strategy:

1. Align all inner to outer chambers
2. Align adjacent sectors

Laser, cosmics, collisions populate different parts of the global covariance matrix

Requirements achieved

 with:$\sim 240 \mathrm{k}$ laser tracks ~200k cosmic tracks (few hours at $\sim 30 \mathrm{~Hz}$) ~15k pp events But, TPC calibration (E×B!) much more challenging...

ITS-TPC relative alignment

M.Krzewicki

- Relative alignment of ITS and TPC (3 shifts + 3 angles) with straight tracks (including cosmics)
- Alignment requirements: given by TPC resolutions:

4 shifts: ~100 $\mu \mathrm{m}$
4 angles: ~ 0.1 mrad

- Method (under development):

4 Assume that TPC and ITS are already internally aligned and calibrated

* Use independently fitted tracks in the ITS and the TPC
- Alignment params are estimated
 by a Kalman filter algorithm

J.Castillo et al.

- Expected mounting precision
* chambers $x, y, z \sim 1 \mathrm{~mm}$

4 detection elements $x, y, z \sim 500 \mu \mathrm{~m}$

- Alignment requirements: $x, y<50 \mu \mathrm{~m}$
- Geometrical Monitoring System:

4 chambers $x, y, z \sim 20 \mu \mathrm{~m} \rightarrow$ R.Tieulent

- Track-based (need pp!) alignment with Millepede1 for the detection elements

Abstract

(survey+photogrammetry):

MUON spectrometer

Summary

- ALICE first alignment plans being defined
- Track-based alignment algorithms
* common framework for barrel tracking detectors
> extract track points, fit tracks, handle \& minimize residuals
- local iterative approach expected to be ok for big detectors with limited number of volumes (TPC, TRD)
4 more challenging is ITS: 3 Si-detector types, > 2000 volumes, high precision required
$>$ local iterative method
> Millepede1 (global)
* muon arm: well advanced (Millepede1, need pp events)
- Getting ready for cosmics run (end 07)

4 trigger strategies
${ }^{4}$ adapting/optimizing tracking for cosmics events
thanks to A.Jacholkowski, R.Grosso, R.Silva \& all ali(ce)gners

EXTRA SLIDES

Pb-PB nominal run
/Ldt $=5.10^{26} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \times 10^{6} \mathrm{~s}$
$5.10^{32} \mathrm{~cm}^{-2} \mathrm{PbPb}$ run, 5.5 TeV
$N_{\text {PbPb collisions }}=2.10^{9}$ collisions
Muon triggers:
~ 100\% efficiency, ~ 1kHz
Electron triggers:
Bandwidth limitation
$N_{\text {PbPb central }}=2.10^{8}$ collisions Hadron triggers:

$$
N_{\text {PbPb central }}=2.10^{7} \text { collisions }
$$

pp nominal run

$\mathcal{L} d t d t=3.10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \times 10^{7} \mathrm{~s}$
$5.10^{37} \mathrm{~cm}^{-2}$ for pp run, 14 TeV
$N_{\text {pp collisions }}=2.10^{12}$ collisions
Muon triggers:
~ 100\% efficiency, < 1 kHz
Electron triggers:
~ 50\% efficiency of TRD L1
20 physics events per event Hadron triggers:
$N_{\text {pp minb }}=2.10^{9}$ collisions

Track-based alignment in the barrel

- Framework Overview -

