First CMS Alignment Geometry: Survey Data and Their Implementation

# Andrei Gritsan

Johns Hopkins University

FOR CMS Tracker and Muon Alignment Groups





June 26, 2007

LHC Alignment Workshop, CERN, Switzerland

# CMS Geometry: Pixel, Strip, Muon

• Complex CMS tracking geometry:



#### • First data: "optical" survey

# Outline

- First CMS alignment geometry: "optical" survey data
  - (1) pixel (barrel/forward)
  - (2) strip (barrel/endcap)
  - (3) muon (barrel/endcap)

Survey implementation in alignment (with tracks)

(4) general idea

(5) algorithm-specific implementations

(e.g. HIP, Millepede, Kalman)

# Why We Need Survey

 Complexity of alignment with tracks: ~20k sensors on CMS
 poor degrees of freedom
 systematic deformations
 low statistics (initially)

• Survey in alignment:



starting point (but not only) default solution if join with tracks (avoid divergence) constrain poorly known ( $\chi^2$ -invariant) degrees of freedom tracks win naturally (transition with statistics) the only constraint for "dead" units or strip sides

# (1) CMS Pixel Detector



- Hierarchical structures:
  - construction
  - survey
  - movement after assembly
- Forward pixel (endcap):
  - full "optical" survey
- Barrel pixel:
  - survey planned (layer 1&3)
  - finite element analysis

# CMS Pixel Survey Data

- Different methods:
  - fiducial points on sensors optical CMM (coord. measuring machine)
  - ball target touch probe
  - photo targets photogrammetry with triangulation
- Example: forward pixel survey



#### **Fiducial Points**



# CMS FPixel Detector Survey



- Survey goal:
  - sensor positions/orientation
     hierarchical errors
     from survey and time-dependence
  - Typical errors:

$$\begin{split} &(\Delta \vec{\mathbf{R}}, \Delta \vec{\Omega})_{\text{halfcylinder}} (\sigma > 50 \mu \text{m}) \\ &(\Delta \vec{\mathbf{R}}, \Delta \vec{\Omega})_{\text{halfdisk}} (\sigma > 10 \mu \text{m}) \\ &(\Delta \vec{\mathbf{R}}, \Delta \vec{\Omega})_{\text{blade}} (\sigma \sim 10 \mu \text{m}) \\ &(\Delta \vec{\mathbf{R}}, \Delta \vec{\Omega})_{\text{panel}} (\sigma \sim 10 \mu \text{m}) \\ &(\Delta \vec{\mathbf{R}}, \Delta \vec{\Omega})_{\text{sensor}} (\sigma \sim \text{few } \mu \text{m}) \end{split}$$

# Analysis of Optical Survey Data

- Analysis idea:
  - minimize  $\chi^2$  to match fiducial points
  - obtain shift/rotation of sub-structure  $(\Delta \vec{R}, \Delta \vec{\Omega})$



• Different implementations, e.g. analytical solution:

$$\begin{split} \mathbf{R}_{k} &= (\sum_{\substack{j,i\neq I\\ n\times N}}^{n\times N} m_{ij} \cdot d\vec{r}_{ij})_{k} / (\sum_{\substack{j,i\neq I}}^{n\times N} m_{ij}) \\ &\sum_{k=1}^{3} \Omega_{k} \sum_{j,i\neq I}^{n\times N} m_{ij} (\delta_{kl}(\vec{r}_{ij})^{2} - (\vec{r}_{ij})_{k}(\vec{r}_{ij})_{l}) = \sum_{j,i\neq I}^{n\times N} m_{ij} (\vec{r}_{ij} \times d\vec{r}_{ij})_{l} \end{split}$$

Andrei Gritsan, JHU

#### CMS Forward Pixel Detector

• Few typical panels:  $\Delta R \sim 50 - 100 \mu m$ ,  $\sigma_R \sim 1 - 2 \mu m$  (consistency)



• Pixel sensors are flat to  $1-2\mu m$ 





# Larger Structures in Survey



- Higher-level structures: photogrammetry (survey with pictures) errors 15–50 $\mu$ m, they also move more with time
- Account for time-dependence:
  - correct for temperature deformations (calculation and/or test-stand)
  - finite element analysis started for Barrel Pixel
  - inflate errors of survey (more for certain degrees of freedom)

# Finite Element Analysis of CMS Pixel

- FEA barrel pixel L3:  $+20^{\circ}C \rightarrow -10^{\circ}C$ ,
- radial movement NODAL SOLUTION STEP=1  $\sim 260 \mu m$  at z=0 SUB =1 TIME=1 APR 30 2007 IIY (AVG) 14:55:30  $(150 \mu m \text{ in } L1)$ RSYS=0 DMX =.268709 SMN =-.261539 SMX =.141448 - end flange very stiff Forward pixel test stand  $\sim 50 \mu m$  movement with  $\Delta t \sim -30^{\circ}$ C -.082434 -.261539-.171986.007119 .096671 -.216762 -.12721 -.037657 .051895 .141448
- However: 2008-2009 pixel running at  $+20^{\circ}$ C

# Error Analysis

- Fiducial CMM point errors:
  - from redundant measurements  $1\mu m$  in plane,  $3\mu m$  out
  - $-5\mu$ m sensor systematic shifts
- Hierarchical errors:
  - toy Monte Carlo  $\Rightarrow$  var $(\vec{R}, \vec{\Omega})$



- Time-dependence in real data:
  - inflate certain errors
  - compare survey/track residuals



# (2) CMS Tracker



- Strip Tracker:
  - Inner Barrel (TIB) and Inner Disk (TID)
  - Outer Barrel (TOB) and EndCap (TEC)

# CMS Strip Detector



# Strip Survey: Inner Barrel (TIB) & Disk (TID)

- Full CMM survey:
  - sensor planarity  ${\sim}100\mu{
    m m}$
  - error analysis to be finalized





# Strip Survey: Tracker EndCap (TEC)

- Only disk position with photogrammetry
  - consistent with cosmics/laser
  - to be merged in one alignment (see later)
- Sample CMM survey of petals/disks
   quality and assembly precision control





# Errors in Strip Survey and Assembly

• Assembly precision (µm):

| Inner Barrel |     | Inner Disk |     | Outer Barrel |               | EndCap |     |
|--------------|-----|------------|-----|--------------|---------------|--------|-----|
| Sensor       | 10  | Sensor     | 10  | Sensor       | 10            | Sensor | 10  |
| Module       | 10  | Module     | 10  | Module       | 10            | Module | 10  |
|              | 180 |            | 54  |              | 30            |        | 20  |
| Shell        | 450 | Ring       | 185 | Rod          | 200           | Petal  | 70  |
| Cylinder     | 100 | Disc       | 100 | Wheel        | 200           | Disc   | 10  |
|              | 750 |            | 350 |              | 140 $(r\phi)$ |        | 150 |
| Tube         |     | Cylinder   |     | Tube         | 500(z)        | TEC    |     |
|              |     | Tube       | 450 | CMS          | 1000          | Tube   | 600 |



- TOB and TEC module assembly precision sampled with CMM survey
- Survey precision of TIB/TID modules to be finalized

# (3) Muon Detector



• Barrel muon:

- Drift Tube chambers (DT)
- 250 chambers
- Endcap muon:
  - Cathode Strip Chambers (CSC)
  - $-2 \times 236$  chambers
- Survey: photogrammetry
- Internal structure of chambers:
  - survey + tracks

# Muon Barrel Survey

- Geometry: 5 wheels, 4 layers, 12 sectors
- Survey: photogrammetry
  - chambers in a wheel (survey of corners)
  - wheel relative to central wheel (x, y, and  $\alpha_z$ )
- Precision:  $\sim 200 \mu m$ , 0.1mrad (chambers)







### Muon Barrel Survey

- Main effect: gravity sag
  - example: chambers in a wheel (+1) vs.  $\phi$



### Muon Chamber Structure

- Muon chambers provide track direction, not only "hit"
- DT chamber structure (align only once):
  - survey Super-Layer displacements
  - survey Layers within Super-Layer
  - cosmic track alignment: good agreement (e.g.  $\Delta X$  below)



# Muon Endcap Survey

- Geometry: 4 disks, 2 rings with 36 or 18 chambers
- Survey photogrammetry
  - disk in endcap
  - chambers in a disk (2 pins only)





- Analysis in progress
- errors  $\sim$ 300 $\mu$ m



residual  $\epsilon$  function of sensor position parameters  $(\mathbf{R}, \mathbf{\Omega})$ , to be found

### Some Prior Experience

• Survey Constraint on BABAR proved to be useful (2000-2007):



#### Survey Measurement in Alignment

• Input survey of hierarchical structures:

$$\chi^2(\mathbf{R}, \mathbf{\Omega}) = \sum_{i=1}^{N_{\text{hits}}} \epsilon_i^T \mathbf{V}_i^{-1} \epsilon_i + \sum_{j=1}^{N_{\text{str.}}} \epsilon_{j, \text{survey}}^T \mathbf{V}_{j, \text{survey}}^{-1} \epsilon_{j, \text{survey}} \epsilon_{j, \text{su$$

• Solution: (e.g.  $6 \times 6$  matrix) (e.g.  $6 \times 1$  vector)  $\delta \mathbf{p} = \left[\sum_{i}^{\text{hits}} \mathbf{J}_{i}^{T} \mathbf{V}_{i}^{-1} \mathbf{J}_{i} + \sum_{j}^{\text{survey}} \mathbf{J}_{*j}^{T} \mathbf{V}_{*j}^{-1} \mathbf{J}_{*j}\right]^{-1} \left[\sum_{i}^{\text{hits}} \mathbf{J}_{i}^{T} \mathbf{V}_{i}^{-1} \epsilon_{i} + \sum_{j}^{\text{survey}} \mathbf{J}_{*j}^{T} \mathbf{V}_{*j}^{-1} \epsilon_{*j}\right]$ 

Survey residual  $\epsilon_{*j} = (\Delta \mathbf{R}_j, \Delta \Omega_j) \Rightarrow \mathbf{J}_* = \partial \epsilon_* / \partial(\mathbf{p}) = \partial \epsilon_* / \partial(\mathbf{R}, \Omega) = \mathbf{I}$ 

Weighted average w/o tracks and for diagonal  ${f V_*}^{-1}=1/\sigma_x^2...$ :

$$\delta \mathbf{x} = \left[\sum_{j}^{\text{survey}} \left(\frac{1}{\sigma_{\mathbf{x}_{j}}^{2}}\right)\right]^{-1} \left[\sum_{j}^{\text{survey}} \left(\frac{\Delta \mathbf{x}_{j}}{\sigma_{\mathbf{x}_{j}}^{2}}\right)\right]$$

Andrei Gritsan, JHU

#### Survey Residuals

• We have "current" and "reference" sensor positions:



• First bring to common system of coordinates ("current"):



### Survey Residual: Rigid Body Motion

- Rigid body motion: minimize shift  $\chi^2$ ŔΩ ("unbiased"  $i \neq I$ ) 0 0 0 0 0 0  $n \times N$  $n \times N$ 0 · · ·  $R_k = (\sum m_{ij} \cdot d\vec{r}_{ij})_k / (\sum m_{ij})$  $i.i \neq I$  $n \times N$  $\sum \Omega_k \sum m_{ij} (\delta_{kl}(\vec{r}_{ij})^2 - (\vec{r}_{ij})_k (\vec{r}_{ij})_l) = \sum m_{ij} (\vec{r}_{ij} \times d\vec{r}_{ij})_l$  $j, i \neq l$  $j, i \neq I$ 
  - Residual:  $\epsilon_* = (\Delta \vec{\mathbf{R}}, \Delta \vec{\Omega})$ remaining transformation

again minimize shift  $\chi^2$ , but i = I

• Covariance: V



# (5) Example: Local $\chi^2$ Iterative Method (HIP)

- Example with CMS Pixel Detector
  - small number of tracks 50k
  - iterate to solve correlations



# Example: MillePede Method

- Survey and mounting precision constraint:
  - improved starting values
  - large deviations from start positions suppressed:  $\chi^2$  penalties +1/ $\sigma^2$  to diagonal  $\Rightarrow$  increase eigenvalues, avoid numerical problems (constraint would be lost with many iterations)
- Survey measurements:

$$\sum c_i p_i = m \pm \sigma_m$$

e.g. constrain linear combination of parameters  $\sum \Delta X_i = 0$ 



- new feature in MillePede, being tested

# MillePede Example; Kalman Method

• Example with constraint ( $\chi^2$  penalties):

- tracks from  $\sim 2 \text{ fb}^{-1}$  (2 million  $Z \rightarrow \mu^+ \mu^-$ )
- significant improvement with constraint



• Kalman Filter: started to implement survey residuals  $s_i$ align. parameters for alignable i:  $\hat{d}_i = d_i + D_i(D_i + S_i)^{-1}(s_i - d_i)$ 

# Summary of CMS Survey Geometry

- Survey of most CMS tracking systems:
  - pixel Si detectors
  - strip Si detectors
  - muon system
- Usage of survey:
  - quality control
  - geometry at start-up
  - constraint or measurement with tracks
- Importance in software alignment:
  - reduction of degrees of freedom, better convergence
  - constraint of  $\chi^2$ -invariant distortions

